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Abstract

In this paper, we formulate a hybrid version of the two-stage pro-
cedure for the utility maximization problem of a consumer proposed
by Green (1964). In particular, we replace the second stage of his pro-
cedure with a problem of expenditure minimization. Our procedure
allows us to specify the price indices of each group of commodities as
the minimum expenditure to achieve an utility level equal to one at
the prices of the commodities belonging to that group.
Journal of Economic Literature Classification Number: D11.

1 Introduction

Green (1964) presented in a systematic way some seminal contributions to
the theory of aggregation in economic analysis (we refer directly to his book
for a survey of this path-breaking literature).

In particular, he analyzed the conditions under which the utility maxi-
mization problem of a consumer can be split into two stages, by grouping
commodities and determining a quantity index and a price index for each

∗Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Udine,
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group of commodities. One of these conditions, called homogeneous sepa-
rability, requires that the utility function of the consumer can be expressed
as a function of quantity indices, each representing a group of commodi-
ties as a function homogeneous of degree one defined on the commodities
in that group. In order to define a two-stage procedure, a price index must
be associated to each group of commodities also expressed as a function of
the prices of the commodities in that group. Given the consumer’s income,
Green (1964) considered a two-stage utility maximization procedure whose
first stage determines, through the solution of a maximization problem, the
quantity indices of each group of commodities, given the corresponding price
indices and the consumer’s income, and whose second stage determines,
through the solution of a maximization problem, the quantities of the com-
modities belonging to each group given the prices of the commodities in
that group and the product between the group quantity and price indices
as a budget constraint. Under some standard regularity assumptions which
guarantee the uniqueness of the solutions to the maximization problems,
Green (1964) defined as consistent that two-stage procedure whose unique
solution coincides with the solution of the consumer’s utility maximization
problem.

One of the most successful applications of the two-stage maximization
procedure systematized by Green (1964) was provided by Dixit and Stiglitz
(1977) in a seminal article which introduced a new approach to the theory
of monopolistic competition, generating an impressive stream of literature.
In particular, they split commodities into two groups, one containing just
a numéraire commodity and the other containing all other commodities.
Then, the whole demand properties of their model of monopolistic compe-
tition were derived through the Green two-stage maximization procedure
sketched above, under the crucial assumption of homogeneity of degree one
of the quantity indices.

Lloyd (1977) considered the dual of the Green two-stage maximization
procedure: a two-stage minimization procedure. He fully developed the
theoretical background of this procedure and its fruitful applications.

d’Aspremont and Dos Santos Ferreira (2016) reconsidered the model
of monopolistic competition introduced by Dixit and Stiglitz (1977) and
replaced their procedure with a hybrid one consisting of a first stage where
the consumer minimizes the expenditure to achieve a certain level of the
quantity index associated to the non-numéraire commodities and a second
stage which determines, through the solution of a maximization problem, the
quantities of each group of commodities. Nevertheless, they left unspecified
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the properties of the quantity and price indices associated with their hybrid
two-stage maximization procedure.

In this paper, we also formulate a hybrid version of the Green two-stage
procedure. In particular, we solve his utility maximization problem main-
taining all his assumptions and using a two-stage procedure whose first stage
determines, through the solution of a maximization problem, the quantity
indices of each group of commodities, given the corresponding price indices
and the consumer’s income, and whose second stage determines, through
the solution of an expenditure minimization problem, the quantities of the
commodities belonging to each group, given the prices of the commodities
in that group, which minimize the expenditure to achieve the level of the
corresponding quantity index, determined as a solution of the first stage
maximization problem. We show the consistency of this procedure, under
the assumption, neglected by Green (1964) and Lloyd (1977), that the so-
lutions to all the optimization problems are interior. The advantage of the
two-stage procedure we propose is that, thanks to homogeneous separabil-
ity, in the first stage, the quantity indices are nonnegative and the price
indices of each group of commodities correspond to the minimum expendi-
ture to achieve an utility level equal to one at the prices of the commodities
belonging to that group.

Finally, we note that, in the Dixit and Stiglitz framework, under the
assumption of homogeneous separability, our two-stage maximization pro-
cedure is the dual of that proposed by d’Aspremont and Dos Santos Ferreira
(2016).

2 Mathematical model

We consider a consumer who consumes n commodities. Let the vector x =
(x1, . . . , xn) ∈ Rn

+ denote a bundle of commodities. The preferences of the
consumer are represented by a utility function u(x). We make the following
assumption on the function u.

Assumption 1. The function u is continuous and twice continuously dif-
ferentiable.

We now provide a definition of weak separability of the function u (see
Lloyd (1977)).

Definition 1. The function u is said to be weakly separable with respect
to the partition of the n commodities into m disjoint and exhaustive subsets
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N1, . . . , Nm if

u(x) = V (v1(x̄1), . . . , v
j(x̄j), . . . , v

m(x̄m),

where the functions vj are continuous and twice continuously differentiable,
x̄j = (xj1, . . . , xjnj ), j = 1, . . . ,m < n, and

∑m
j=1 nj = n.

The notion of weak separability can be strengthened imposing the re-
quirement that the functions vj are homogeneous of degree one for each
j = 1, . . . ,m (see Lloyd (1977)).

Definition 2. The function u is said to be homogeneously separable with
respect to the partition of the n commodities into m disjoint and exhaus-
tive subsets N1, . . . , Nm if it is weakly separable and the functions vj are
homogeneous of degree one, for each j = 1, . . . ,m.

We make the following assumption on the function u.

Assumption 2. The function u is homogeneously separable.

Henceforth, given Assumption 2, we shall rename, with some abuse of
notation, the arguments of the utility function u, according to their parti-
tion, as follows

x = (x11, . . . , x1n1 , . . . , xj1, . . . , xjnj , . . . , xm1, . . . , xmnm).

Let uji = ∂u
∂xji

, j = 1, . . . ,m, i = 1, . . . , nj and uji,rk = ∂2u
∂xji∂xrk

, j =

1, . . . ,m, i = 1, . . . , nj , r = 1, . . . ,m, k = 1, . . . , nk.
We can now introduce further regularity conditions on the function u

(see Green (1964)).

Assumption 3. uji > 0, j = 1, . . . ,m, i = 1, . . . , nj and the principal
minors of order q (q ≥ 3) of the matrix

A =



0 u11 . . . uji . . . umnm

u11 u11,11 . . . u11,ji . . . u11,mnm

. . . . . . . . . . . . . . . . . .
uji uji,11 . . . uji,ji . . . uji,mnm

. . . . . . . . . . . . . . . . . .
umnm umnm,11 . . . umnm,ji . . . umnm,mnm


have the sign of (−1)q+1.

According to Assumption 3, the function u is strongly increasing and
strictly quasi-concave.
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Let p = (p11, . . . , p1n1 , . . . , pj1, . . . , pjnj , . . . , pm1, . . . , pmnm) ∈ Rn
++ be

a vector of prices and let I be the income of the consumer. Moreover let
p̄j = (pj1, . . . , pjnj ), j = 1, . . . ,m.

Consider the following utility maximization problem

max
x

u(x) (1)

subject to

px = I.

There exists a unique solution to the utility maximization problem (1) ˆ̄xj ,
j = 1, . . . ,m, as the utility function is continuous, strongly increasing, and
strictly quasi-concave (see Propositions 3.D.1 and 3.D.2 in Mas-Colell et al.
(1995)).

Let Vj =
∂V
∂vj

, j = 1, . . . ,m, and Vjr =
∂2V

∂vj∂vr
, j = 1, . . . ,m, r = 1, . . . ,m.

Moreover, let vjji =
∂vj

∂xji
, j = 1, . . . ,m, i = 1, . . . , nj , and vjji,jk = ∂2vj

∂xji∂xjk
,

j = 1, . . . ,m, i = 1, . . . , nj , k = 1, . . . , nj .
We make the following further assumption on the functions vj , j =

1, . . . ,m.

Assumption 4. vjji > 0, j = 1, . . . ,m, i = 1, . . . , nj .

The following proposition establishes the regularity conditions of the
function V .

Proposition 1. Under Assumptions 1, 2, 3, and 4, the function V is such
that Vj > 0, j = 1, . . . ,m, and the principal minors of order q (q ≥ 3) of the
matrix

B =



0 V1 . . . Vj . . . Vm

V1 V11 . . . V1j . . . V1m

. . . . . . . . . . . . . . . . . .
Vj Vj1 . . . Vjj . . . Vjmn

. . . . . . . . . . . . . . . . . .
Vm Vm1 . . . Vmj . . . Vmm


have the sign of (−1)q+1.

Proof. We have that uji = Vjv
j
ji, j = 1, . . . ,m, i = 1, . . . , nj . Then, it must

be that Vj > 0, j = 1, . . . ,m, as uji > 0, by Assumption 3, and vjji > 0, by
Assumption 4, j = 1, . . . ,m, i = 1, . . . , nj . The principal minors of order q
(q ≥ 3) of the matrix B have the sign of (−1)q+1 as the principal minors of
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order q (q ≥ 3) of the matrix A have the sign of (−1)q+1, by Assumption 3,
and the functions vj are homogeneous of degree one, for each j = 1, . . . ,m,
by Assumption 2, by Theorem 5 in Green (1964).

According to Proposition 1, the function V is strongly increasing and
strictly quasi-concave. The following proposition completes the regularity
conditions of the functions vj , j = 1, . . . ,m.

Proposition 2. Under Assumptions 1, 2, 3, and 4, the principal minors of
order q (q ≥ 3) of the matrices

Cj =



0 vjj1 . . . vjjk . . . vjjnj

vjj1 vjj1,j1 . . . vjj1,jk . . . vjj1,jnj

. . . . . . . . . . . . . . . . . .

vjjk vjji,j1 . . . vjji,jk . . . vjji,jnj

. . . . . . . . . . . . . . . . . .

vjjnj
vjjnj ,j1

. . . vjjnj ,jk
. . . vjjnj ,jnj


have the sign of (−1)q+1, j = 1, . . . ,m.

Proof. The principal minors of order q (q ≥ 3) of the matrices Cj , j =
1, . . . ,m, have the sign of (−1)q+1 as Vj > 0, j = 1, . . . ,m, by Proposition
1, and the principal minors of order q (q ≥ 3) of the matrix A have the sign
of (−1)q+1, by Assumption 3, by Theorem 6 in Green (1964).

According to Assumption 4 and Proposition 2, the functions vj are
strongly increasing and strictly quasi-concave, j = 1, . . . ,m.

3 Expenditure minimization and homogeneity of
degree one

Consider the following expenditure minimization problem

min
x̄j

p̄j x̄j (2)

subject to

vj(x̄j) ≥ v,

j = 1, . . . ,m.
Let vj0 = vj(0, . . . , 0), j = 1, . . . ,m.
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We can now state and prove the following propositions (see also Espinosa
and Prada (2012)).

Proposition 3. Under Assumption 2, vj0 = 0, j = 1, . . . ,m.

Proof. We have that

vj0 = vj(0, . . . , 0) = vj(t0, . . . , t0) = tvj(0, . . . , 0),

for each t > 0, as the function vj is homogeneous of degree one, by Assump-
tion 2. Hence, it must be that vj0 = 0, j = 1, . . . ,m.

Proposition 4. v ≤ vj0 if and only if x̄j = (0, . . . , 0) is a solution to the
expenditure minimization problem (2), j = 1, . . . ,m.

Proof. Suppose that v ≤ vj0. Then, it must be that x̄j = (0, . . . , 0) is a
solution to the expenditure minimization problem (2). Suppose now that
x̄j = (0, . . . , 0) is a solution to the expenditure minimization problem (2).
Moreover, suppose that v > vj0. Then, we have that

vj0 = vj(x̄j) = vj(0, . . . , 0) ≥ v > vj0,

a contradiction. But then, it must be that v ≤ vj0. Hence, we have that v ≤
vj0 if and only if x̄j = (0, . . . , 0) is a solution to the expenditure minimization
problem (2), j = 1, . . . ,m.

From Propositions 3 and 4, we can rewrite the expenditure minimization
problem (2) as

min
x̄j

p̄j x̄j (3)

subject to

vj(x̄j) ≥ v ≥ 0,

as vj0 = 0, j = 1, . . . ,m.
It is well known that, under Assumptions 1, 2, 3, and 4, there ex-

ists a unique solution ˜̄xj to the expenditure minimization problem (3),
j = 1, . . . ,m (see, for instance, Exercise 3.E.3 and Proposition 3.E.3 in
Mas-Colell et al. (1995)) and vj(˜̄xj) = v, j = 1, . . . ,m (see, for instance,
Proposition 10.2 in Kreps (2013)). Therefore, we can to further specify the
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expenditure minimization problem (3) as follows.

min
x̄j

p̄j x̄j (4)

subject to

vj(x̄j) = v ≥ 0,

j = 1, . . . ,m.
Let ej(p̄j , v

j) denote the expenditure minimization function, i.e., the
function which associates with each price vector p̄j and each level of utility
v ≥ 0, the unique solution to the expenditure minimization problem (4),
j = 1, . . . ,m. It is also well known that, under Assumptions 1, 2, 3, and
4, ej(p̄j , v

j) = ej(p̄j , 1)v
j , j = 1, . . . ,m (see, for instance, Corollary 1 in

Espinosa and Prada (2012)). Since ej(p̄j , 1) will play the role of a price index
of each subset of commodities Nj in the two-state maximization procedure,
we conclude this section showing that it is strictly positive.

Proposition 5. Under Assumptions 1, 2, 3, and 4, ej(p̄j , 1) > 0, j =
1, . . . ,m.

Proof. We have that ej(p̄j , 1) ≥ 0, j = 1, . . . ,m, as p̄j ∈ R
nj

++ and x̄j ∈ R
nj

+ ,
j = 1, . . . ,m. Suppose that ej(p̄j , 1) = 0 for some j. Let ˜̄xj be the unique
solution to the expenditure minimization problem (4) for v = 1. Then, we
have that ˜̄xj = 0 as p̄j ∈ R

nj

++. But then, it must be that vj(˜̄xj) = vj0 = 0,
by Propositions 3 and 4. However, it must also be that vj(˜̄xj) = 1, a
contradiction. Hence, we have that ej(p̄j , 1) > 0, j = 1, . . . ,m.

4 Two-stage budgeting through utility maximiza-
tion and expenditure minimization

Consider the following maximization problem.

max
v1,...,vm∈Rm

+

V (v1, . . . , vm) (5)

subject to
m∑
j=1

ej(p̄j , 1)v
j = I.
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There exists a unique solution to the utility maximization problem (5),
v1∗, . . . , vm∗, as the function V is strongly increasing and strictly quasi-
concave by Proposition 1 (see Propositions 3.D.1 and 3.D.2 in Mas-Colell et
al. (1995)).

We consider a two-stage hybrid maximization procedure whose first stage
determines, through the solution of the utility maximization problem (5),
the quantity index vj of each subset of commodities Nj , given a price index
which corresponds to the minimum expenditure to achieve a level of utility
equal to 1 at the prices p̄j of the commodities belonging to the subset Nj ,
and whose second stage determines, through the solution of the expenditure
minimization problem (4), the quantities of the commodities belonging to
each subset Nj which minimize the expenditure to achieve the utility level
vj , determined as a solution of the first stage maximization problem, at the
prices p̄j of the commodities belonging to the subset Nj .

The following definition characterizes the consistency of this two-stage
procedure according to the conditions introduced by Green (1964).

Definition 3. Under Assumptions 1, 2, 3, and 4, the two-stage maximiza-
tion procedure constituted by the utility maximization problem (5) and the
expenditure minimization problem (4) is consistent if the unique solution
v1∗, . . . , vm∗ to the utility maximization problem (5) and the unique solu-
tion x̄∗j to the expenditure minimization problem (4) when vj(x̄j) = vj∗,

j = 1, . . . ,m, are such that ej(p̄j , 1)v
j∗ = p̄j x̄

∗
j and x̄j

∗ = ˆ̄xj , j = 1, . . . ,m,

where ˆ̄xj , j = 1, . . . ,m, is the unique solution to the utility maximization
problem (1).

We can now state and prove our main theorem.

Theorem. Under Assumptions 1, 2, 3, and 4, if the unique solution v1∗, . . . ,
vm∗ to the utility maximization problem (5), the unique solution x̄∗j to the

expenditure minimization problem (4) when vj(x̄j) = vj∗, j = 1, . . . ,m, and
the unique solution ˆ̄xj , j = 1, . . . ,m, to the utility maximization problem (1)
are interior, then the two-stage maximization procedure constituted by the
utility maximization problem (5) and the expenditure minimization problem
(4) is consistent.

Proof. Suppose that the unique solution v1∗, . . . , vm∗ to the utility maxi-
mization problem (5), the unique solution x̄∗j to the expenditure minimiza-

tion problem (4) when vj(x̄j) = vj∗, j = 1, . . . ,m, and the unique solution
ˆ̄xj , j = 1, . . . ,m, to the utility maximization problem (1) are interior. We
have that ej(p̄j , 1)v

j∗ = ej(p̄j , v
j∗) = p̄j x̄

∗
j as x̄∗j is the unique solution to
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the expenditure minimization problem (4) when vj(x̄j) = vj∗, j = 1, . . . ,m.
We now adapt to our framework the proof of Theorem 4 in Green (1964).
Let ˆ̄xj be the unique interior solution to the utility maximization problem
(1), j = 1, . . . ,m, and let û = u(ˆ̄x1, . . . , ˆ̄xm). It must be that

ûji
ûrk

=
p̄ji
p̄rk

,

j = 1, . . . ,m, i = 1, . . . , nj , r = 1, . . . ,m, k = 1, . . . , nk, as ˆ̄xj , j =
1, . . . ,m, is an interior solution to the utility maximization problem (1).
Let v1∗, . . . , vm∗ be the unique interior solution to the utility maximization
problem (5) and let V ∗ = V (v1∗, . . . , vm∗). It must be that

V ∗
j

V ∗
r

=
ej(p̄j , 1)

er(p̄r, 1)
,

j = 1, . . . ,m, r = 1, . . . ,m, as v1∗, . . . , vm∗ is an interior solution to the
utility maximization problem (5). Let x̄∗j be e unique solution x̄∗j to the

expenditure minimization problem (4) when vj(x̄j) = vj∗, j = 1, . . . ,m. It
must be that

vj∗ji

vj∗jk
=

p̄ji
p̄jk

,

j = 1, . . . ,m, i = 1, . . . , nj , k = 1, . . . , nk, as x̄∗j is an interior solution to

the expenditure minimization problem (4) when vj(x̄j) = vj∗, j = 1, . . . ,m.
Moreover, let u∗ = u(x̄∗1, . . . , x̄

∗
m). We have to show that

u∗ji
u∗rk

=
p̄ji
p̄rk

,

j = 1, . . . ,m, i = 1, . . . , nj , r = 1, . . . ,m, k = 1, . . . , nk. Consider first the
case where j = r. We have that

u∗ji
u∗jk

=
V ∗
j v

j∗
ji

V ∗
j v

j∗
jk

=
vj∗ji

vj∗jk
=

p̄ji
p̄jk

,

i = 1, . . . , nj , k = 1, . . . , nj . Consider now the case where j ̸= r. We have
that

u∗ji
u∗rk

=
V ∗
j v

j∗
ji

V ∗
r v

j∗
rk

=
ej(p̄j , 1)v

j∗
ji

er(p̄r, 1)v
j∗
rk

,
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j = 1, . . . ,m, i = 1, . . . , nj , r = 1, . . . ,m, k = 1, . . . , nk, j ̸= r. It must be
that

vj∗ji = λj p̄ji,

i = 1, . . . , nj , where λj is a Lagrange multiplier, as x̄∗j is an interior so-

lution to the expenditure minimization problem (4) when vj(x̄j) = vj∗,
j = 1, . . . ,m. Then, we have that

nj∑
i=1

x̄∗jiv
j∗
ji = λj

nj∑
i=1

p̄jix̄
∗
ji = λje

j(p̄j , v
j∗) = λje

j(p̄j , 1)v
j∗,

j = 1, . . . ,m. But then, we have that

vj∗ = λje
j(p̄j , 1)v

j∗,

by Euler’s theorem, as the function vj is homogeneous of degree one, by
Assumption 2, j = 1, . . . ,m. Therefore, it must be that

ej(p̄j , 1)v
j∗
ji = p̄ji,

as λj =
1

ej(p̄j ,1)
, i = 1, . . . , nj , j = 1, . . . ,m. Thus, we have that

u∗ji
u∗rk

=
V ∗
j v

j∗
ji

V ∗
r v

j∗
rk

=
ej(p̄j , 1)v

j∗
ji

er(p̄r, 1)v
j∗
rk

=
p̄ji
p̄rk

,

j = 1, . . . ,m, i = 1, . . . , nj , r = 1, . . . ,m, k = 1, . . . , nk, j ̸= r. Combining
the two cases, we have shown that

u∗ji
u∗rk

=
p̄ji
p̄rk

,

j = 1, . . . ,m, i = 1, . . . , nj , r = 1, . . . ,m, k = 1, . . . , nk. Therefore, we
have that x̄j

∗ = ˆ̄xj , j = 1, . . . ,m, as ˆ̄xj , j = 1, . . . ,m, is the unique inte-
rior solution to the utility maximization problem (1). Hence, the two-stage
maximization procedure constituted by the utility maximization problem
(5) and the expenditure minimization problem (4) is consistent.
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5 Conclusion

In this paper, we have considered a reformulation of the two-stage proce-
dure for the utility maximization problem of a consumer proposed by Green
(1964) replacing the second stage of his procedure with a problem of ex-
penditure minimization. We have seen that this has allowed us to specify
the price indices of each group of commodities as the minimum expenditure
to achieve an utility level equal to one at the prices of the commodities
belonging to that group.

We have proved the consistency of out two-stage procedure under the
assumption that the solutions to the optimization problems are interior. We
leave for further research an investigation the possibility of extending our
proof to the case of boundary solutions.

Moreover, we leave to further research the possible advantages of the
application of our procedure, given the simplification it allows in pricing
groups of commodities, to some fields of economic analysis, starting from
the theory of monopolistic competition.
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