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Abstract

What is the appropriate economic welfare standard for antitrust
in general equilibrium? In this paper, we address this question in an
Edgeworth box economy model of monopoly introduced by Busetto
et al. (2023), where one commodity is held only by the monopolist,
represented as an atom, and the other is held only by small traders,
represented by an atomless part. In this framework, we reconcile the
different approaches characterizing the so-called Chicago School, on
one hand, and the so-called New Brandeis School, on the other. More-
over, we readapt to our context a paradox, first formulated by Shi-
tovitz (1997), which shows that the Brandeisian “curse of bigness”
overwhelms the direct exercise of market power by the monopolist.
Journal of Economic Literature Classification Numbers: D42, D51,
L41.

1 Introduction

Judge Robert H. Bork, one of the leading exponent of the so-called Chicago
School, provided a foundation of antitrust policy arguing that its goal should

∗Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Udine,
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be “allocative efficiency.” In his celebrated book (see Bork (1978)), he con-
sidered the notion of allocative efficiency as related to that of “consumer wel-
fare” (see p. 91). His viewpoint is at the origin of a long-standing antitrust
controversy, reconstructed by Salop (2010), regarding the economic welfare
standard for antitrust. According to Salop, the main point of contention was
between some commentators who favored the “aggregate economic welfare”
standard, sometimes called also “efficiency” standard, and other commen-
tators who favored the “true consumer welfare” standard, sometimes called
also the “pure consumer welfare” standard. Salop made precise that he in-
troduced the “true” qualifier just because of the confusion that had resulted
from Judge Robert Bork’s usage of the term “consumer welfare” in referring
to aggregate welfare (see p. 336).

Lande (1982) criticized Bork’s foundation of antitrust based on alloca-
tive efficiency – which he reduced to Pareto optimality – arguing that the
redistributive effects of monopoly on consumers, whereby consumers are
poorer but the monopolist richer, in general exceed any effects of alloca-
tive inefficiency by a substantial amount (see pp. 74-75). After Lande’s
contribution, the controversy regarding which economic welfare standard
should be used for assessing the social cost of monopoly reduced to the jux-
taposition between the Pareto optimality criterion and the (true) consumer
welfare criterion. An aspect of the analysis that contributed to exacerbate
the controversy concerned the way in which the social cost of monopoly was
measured. As stressed by Brown and Lee (2008), the most familiar mea-
sure was represented by the deadweight loss triangle, originally introduced
within a partial equilibrium analysis. This measure and its generalizations
proposed by the Chicago School were not immune from serious ambiguities.
Brown and Lee (2008) noticed that these ambiguities were principally due
to the limits of partial equilibrium analysis.

They consequently proposed to use a general equilibrium theory of mo-
nopoly. Nevertheless, on this point they acknowledged the following diffi-
culty: “The conspicuous absence of general equilibrium theory to antitrust
law is due in part to the indeterminacy of the price level in the Arrow-Debreu
model. As such, the model does not admit price-setting, profit maximizing
firms” (see footnote 15, p. 55). This is a well-known problem of general
equilibrium models with imperfect competition (see, for instance, Grodal
(1996)). Anyhow, these authors affirmed: “The notion of efficiency and
welfare in general equilibrium theory is Pareto optimality, also known as
allocative efficiency” and, referring to Judge Bork’s analysis, they stated:
“The primary goals of antitrust are efficiency and enhancing of consumer
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welfare. Both of these concepts appeal to Pareto optimality” (see p. 56).
Brown and Lee (2008) observed that, in the partial equilibrium analysis

of the social cost of monopoly measured by deadweight loss, the relevant
benchmark of allocative efficiency is the Pareto optimal state of perfect
competition. Nevertheless, they further pointed out the reason why the
deadweight loss analysis of the social cost of monopoly may be problematic:
“[...] It ignores the social cost of inducing perfect competition [...] in a given
industry, and thus assumes a counterfactual that is not attainable even by
a benevolent social planner” (see p. 48).

These authors were, thus, confronted with the cumbersome puzzle con-
sisting in determining the social cost of monopoly in terms of Pareto op-
timality without referring to the usual benchmarks of partial equilibrium
analysis obtained by means of profit maximization: the monopoly solution
and the perfectly competitive solution. They dealt with this problem by
building a to some extent hybrid model they described as follows: “[...]
Firms with monopoly power have unspecified price-setting rules for output
[...] but are assumed to be cost-minimizing price-takers in competitive fac-
tor markets. [...] Meanwhile, in equilibrium they make supra-competitive
profits since the monopoly price exceeds the marginal cost of production.
Our analysis derives from a subtle but important distinction between price-
setting profit-maximization [...] and monopoly power, i.e., the power to raise
price above the competitive level and make supra-competitive profits” (see
p. 60). Then, they presented what they considered the most appropriate
benchmark for measuring the social cost of monopoly as follows: “We pro-
pose the unique Pareto optimal state characterized by Debreu’s coefficient
of resource utilization [...]. This coefficient is defined as the smallest fraction
of total resources capable of providing consumers with utility levels at least
as great as those attained in the monopolized economic state” (see p. 57).

The main goal of this paper is to establish the relation between economic
welfare standard for antitrust and explicit monopoly and perfectly compet-
itive solutions in a general equilibrium framework. Since, to the best of our
knowledge, there is no general equilibrium model of monopoly with produc-
tion in which the indeterminacy of profit maximization mentioned above has
been overcome, we recast the issue in the simplest and tersest version of a
pure exchange economy: an Edgeworth box economy.

We consider the mixed version of the monopolistic two-commodity ex-
change economy introduced by Shitovitz (1973) in his Example 1. There,
one commodity is held only by the monopolist, represented as an atom, and
the other is held only by small traders, represented by an atomless part.

3



As observed by Aumann (1973), in that framework, the monopolist is
characterized both as a big trader, since it is represented as an atom, and
the only possible seller of the commodity he holds, since he has a corner on
that commodity (see p. 2). Shitovitz (1973) himself initiated an analysis
of the welfare properties of monopoly in terms of the notion of core within
the exchange economy sketched above. Since all allocations in the core are
Pareto optimal, so that allocative efficiency is guaranteed, and they are not
determined at an explicit quantity-setting or price-setting solution, the only
possible benchmark reduces to the Walras equilibrium solution.

In his Example 1, Shitovitz showed that the unique Walras allocation is
worse, in terms of the monopolists utility, than any other allocation in the
core. This led him to formulate the following open problem: “In a market
with exactly one large trader, is it true that at every allocation in the core,
the large trader is not worse off in terms of utility than at the competitive
equilibrium which is worst for him?” (see p. 488).

In the bilateral monopolistic framework of Shitovitz’ Example 1, Au-
mann (1973) gave a negative answer to this question through three examples,
which show that monopoly may be, according to his terminology, “disad-
vantageous.” In the following passage, the author explains why he consid-
ered these examples counterintuitive: “According to the classical theory, the
oceanic traders in a monopoly will act like price takers, i.e., they will max-
imize their utility given the prices set by the monopolist. The monopolist
will set the prices so that the result of price-taking on the part of the ocean
will maximize his utility” (see p. 9). He complained about the lack of a
general foundation for such a theory while recognizing that the core fails to
display the monopolist’s power (see p. 10).1 Moreover, he expressed the
following desiderata: “What one would like is a theory that is applicable
in any market, and when applied to a monopoly, yields the price-taking
mechanism” (see p. 10).

The model of monopoly introduced by Busetto et al. (2023) provided

1The same criticism to the core solution was addressed by Okuno et al. (1980) referring
to the Shitovitz general model of a mixed exchange economy. Indeed, they argued: “While
Shitovitz model would seem especially appropriate for studying oligopoly, he concentrated
not so much on market power per se as on the possibility that all the core outcomes would
still be competitive allocations despite the presence of atoms. Some of the results he
obtained in studying this issue appear so counterintuitive as to seem to call into question
the use of this model with atoms and a nonatomic ocean in studying oligopoly. [...] if
one finds such a result unsatisfying, one need not question the model of atoms and a
continuum. Rather, one might object to the use of the core as the solution concept” (see
p. 22).
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a first answer to these desiderata, within the same setup as of Shitovitz’
Example 1. They assumed that the monopolist acts strategically, making a
bid of the commodity he holds in exchange for the other commodity, while
the atomless part behaves à la Walras; given the monopolists bid, prices
adjust to equate the monopolist’s bid to the aggregate net demand of the
atomless part. Each trader belonging to the atomless part then obtains
his Walrasian demand whereas monopolist’s final holding is determined as
the difference between his endowment and his bid, for the commodity he
holds, and as the value of his bid in terms of relative prices, for the other
commodity. They defined a monopoly equilibrium as a strategy played by
the monopolist, corresponding to a positive bid of the commodity he holds,
which guarantees him to obtain, via the trading process described above, a
most preferred final holding among those he can achieve through his bids.
They used their analytical framework to provide an economic theoretical
foundation of the monopoly solution previously characterized in geometrical
terms by Schydlowsky and Siamwalla (1966), under the assumption that
the aggregate demand of the atomless part for the commodity held by the
monopolist is invertible and differentiable.2

In this paper, we consider the model of quantity-setting monopoly pro-
posed by Busetto et al. (2023), under the simplifying assumption that the
aggregate demand of the atomless part for the commodity held by the mo-
nopolist is invertible. This version of the model is appropriate for a com-
parison with the standard partial equilibrium analysis of monopoly.

Brown and Lee (2008), following Bork (1978), established a fundamen-
tal nexus between antitrust policy and allocative efficiency, interpreted as
Pareto optimality. Nevertheless, their model did not allow them to establish
an equivalent nexus among Pareto optimality, monopoly equilibrium, and
the Walras equilibrium.

In this paper, we establish precisely such a nexus, under the assump-
tion that the Walrasian demand of traders in the atomless part is invertible

2Moreover, they adapted to their monopoly bilateral exchange context the version of
the Shapley window model used by Busetto et al. (2020) and they assumed that the
atomless part behaves à la Cournot making bids of the commodity it holds. Then, they
provided a sequential reformulation of the mixed version of the Shapley window model in
terms of a two-stage game with observed actions where the quantity-setting monopolist
moves first and the atomless part moves in the second stage, after observing the move of
the monopolist in the first stage. This two-stage reformulation allowed them to provide
a game theoretical foundation of the quantity-setting monopoly solution as they proved
that the set of the allocations corresponding to a monopoly equilibrium and the set of
those corresponding to a subgame perfect equilibrium of the two-stage game coincide.
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and differentiable. Indeed, we prove a result which establishes an equiva-
lence between the set of Pareto optimal monopoly allocations and the set
of monopoly allocations, whenever the latter are also Walrasian. Moreover,
we provide an example showing that this equivalence holds non-vacuously.
These results are also extended to the core of the economy through a propo-
sition showing an equivalence between the core and the set of monopoly
allocations, whenever the latter are also Walrasian, and an example show-
ing that this equivalence also holds non-vacuously.

Then, we use our model of a quantity-setting monopolist to confirm
Aumann’s argument, mentioned above, about the impossibility of a disad-
vantageous monopoly within the “classical theory.” We prove two proposi-
tions establishing that monopoly is non-disadvantageous, that the price at
a monopoly equilibrium is not lower than the price at a Walras equilibrium,
and that the quantity supplied by the monopolist of the commodity he holds
at a monopoly equilibrium is not greater than the quantity supplied at a
Walras equilibrium.

Therefore, our Edgeworth framework supports the program of the re-
founding antitrust law on economic theory, in terms of allocative efficiency,
proposed by Bork (1978). Moreover, it also reconciles this program with
its reformulation in terms of consumer welfare, proposed by Lande (1982).
Indeed, interpreting consumer welfare as the welfare of the atomless part,
we provide a proposition showing that monopoly is non-advantageous, for
each trader in the atomless part, with respect to the Walras equilibrium.

In recent years, a new approach to antitrust was proposed by a movement
inspired by Judge Louis D. Brandeis and his strong antimonopoly credo,
synthesized by the idea of the “curse of bigness” (see Brandeis (1914)).
This movement, sometimes called the “New Brandeis School,” can be seen
as an alternative approach to antitrust, radically opposed to the Chicago
School (see, for instance, Khan (2018), p. 131).

Our mixed Edgeworth box economy has a Brandeisian flavor in that –
as stressed above – the monopolist, being an atom in a measure space, em-
bodies the notion of “bigness.” We prove a proposition showing that, when
“bigness” is fully converted into market power and in no way resolves itself
into price-taking, monopoly allocations are not Pareto optimal and they are
advantageous for the monopolist and disadvantageous for each trader in the
atomless part with respect to Walras allocations.

Therefore, in an Edgeworth box, both the Brandeis and the Chicago
School turn out to be concerned with the “curse of bigness.” Nevertheless,
Khan (2018) claimed that the “curse of bigness” goes beyond market power
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by recalling: “Brandeis and many of his contemporaries feared that concen-
tration of economic power aids the concentration of political power, and that
such private power can itself undermine and overwhelm public government”
(see p. 131).

Our Edgeworth box economy is too basic and abstract to represent the
larger political consequences of “bigness,” but it is rich enough to encompass
some of its effects which exceed the rough exploitation of market power. In
order to make this point, we reformulate and adapt to our Edgeworthian
framework a result proved by Shitovitz (1997). His aim was to demonstrate
“a class of monopolies where [...] the core yields a larger exploitation than
at any Pareto optimal outcome that strictly dominates the monopolistic
solution” (see p. 559-560).

Within our framework, we show that, when the monopolist exerts his
market power without behaving as if he were a price-taker, for any monopoly
allocation, there is an allocation in the core, which is neither a monopoly
allocation nor a Walras allocation, and which is advantageous for the mo-
nopolist and non-advantageous for the atomless part with respect to that
monopoly allocation.

The Shitovitz paradox shows that the “curse of bigness” may overwhelm
the manifestation of atomic power in terms of monopolistic market power
and provide a further advantage to the monopolist as argued by the New
Brandeis School.

The paper is organized as follows. In Section 2, we introduce the math-
ematical model and we define the notion of a monopoly equilibrium. In
Section 3, we assume that the aggregate demand of the atomless part for
the commodity held by the monopolist is invertible and we derive its main
properties. In Section 4, we analyze the basic general welfare properties
of monopoly equilibrium. In Section 5, we analyze the consumer welfare
properties of monopoly equilibrium. In Section 6, we introduce the Shi-
tovitz paradox. In Section 7, we draw some conclusions and we suggest
some further lines of research.

2 Mathematical model

We consider a pure exchange economy with large traders, represented as
atoms, and small traders, represented by an atomless part. The space of
traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
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valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) < ∞. Let T0 denote the atomless part of T .
We assume that µ(T0) > 0.3 Moreover, we assume that T \ T0 = {m}, i.e.,
the measure space (T, T , µ) contains only one atom, the “monopolist.” A
null set of traders is a set of measure 0. Null sets of traders are systematically
ignored throughout the paper. Thus, a statement asserted for “each” trader
in a certain set is to be understood to hold for all such traders except possibly
for a null set of traders. A coalition is a nonnull element of T . The word
“integrable” is to be understood in the sense of Lebesgue.

In the exchange economy, there are two different commodities. A com-
modity bundle is a point in R2

+. An assignment (of commodity bundles
to traders) is an integrable function x: T → R2

+. There is a fixed initial
assignment w, satisfying the following assumption.

Assumption 1. wi(m) > 0, wj(m) = 0 and wi(t) = 0, wj(t) > 0, for each
t ∈ T0, i = 1 or 2, j = 1 or 2, i ̸= j.

An allocation is an assignment x such that
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R

2
+ → R, satisfying the following assumptions.

Assumption 2. ut : R
2
+ → R is continuous, differentiable, strongly mono-

tone, and strictly quasi-concave, for each t ∈ T , and ∂ut(xi,0))
∂xj = +∞, for

each xi ∈ R++, whenever w
i(t) > 0, for each t ∈ T0.

4

Let B denote the Borel σ-algebra of R2
+. Moreover, let T

⊗
B denote

the σ-algebra generated by the sets D × F such that D ∈ T and F ∈ B.

Assumption 3. u : T × R2
+ → R, given by u(t, x) = ut(x), for each t ∈ T

and for each x ∈ R2
+, is T

⊗
B-measurable.

Assumption 4. There is a coalition T̄ ⊆ T0 such that ut(·) is additively

separable, i.e., ut(x) = vit(x
i) + vjt (x

j), for each x ∈ R2
+,

dvit(x
i)

dxi > 0,
d2vit((x

i)
dxi2 ≤ 0, for each xi ∈ R+,

dvjt (x
j)

dxj > 0, and
d2vjt (x

j)
dxj2 < 0, for each

xj ∈ R+, whenever w
i(t) > 0, for each t ∈ T̄ .

3The symbol 0 denotes the origin of R2
+ as well as the real number zero: no confusion

will result.
4Differentiability is to be understood as twice continuous differentiability and includes

the case of infinite partial derivatives along the boundary of the consumption set (for a
discussion of this case, see, for instance, Kreps (2012), p. 58).
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We notice that all the propositions proved in Busetto et al. (2023)
also hold under Assumptions 1, 2, and 3 as it is straightforward to ver-
ify that these assumptions imply their Assumptions 1, 2, 3, and 4. A
price vector is a non-null vector p ∈ R2

+. Let X0 : T0 × R2
++ → P(R2

+)
be a correspondence such that, for each t ∈ T0 and for each p ∈ R2

++,
X0(t, p) = argmax{u(x) : x ∈ R2

+ and px ≤ pw(t)}. For each p ∈ R2
++,

let
∫
T0

X0(t, p) dµ = {
∫
T0

x(t, p) dµ : x(·, p) is integrable and x(t, p) ∈
X0(t, p), for each t ∈ T0}. Since the correspondence X0(t, ·) is nonempty
and single-valued, by Assumption 2, it is possible to define the Walrasian
demand of traders in the atomless part as the function x0 : T0×R2

++ → R2
+

such that X0(t, p) = {x0(t, p)}, for each t ∈ T0 and for each p ∈ R2
++.

We reformulate now the following proposition, proved by Busetto et al.
(2023).

Proposition 1. Under Assumptions 1, 2, and 3, the function x0(·, p) is
integrable and

∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ for each p ∈ R2
++.

Proof. See the proof of Proposition 1 in Busetto et al. (2023).

A Walras equilibrium is a pair (p∗,x∗), consisting of a price vector p∗ ∈
R2

++ and an allocation x∗ such that p∗x∗(t) = p∗w(t) and ut(x
∗(t)) ≥ ut(y),

for all y ∈ {x ∈ R2
+ : p∗x = p∗w(t)}, for each t ∈ T . A Walras allocation is

an allocation x∗ for which there exists a price vector p∗ such that the pair
(p∗,x∗) is a Walras equilibrium.

Let E(m) = {(eij) ∈ R4
+ :

∑2
j=1 eij ≤ wi(m), i = 1, 2} denote the

strategy set of atom m. We denote by e ∈ E(m) a strategy of atom m,
where eij , i, j = 1, 2, represents the amount of commodity i that atom m
offers in exchange for commodity j. Moreover, we denote by E the matrix
corresponding to a strategy e ∈ E(m).

We then provide the following definition.

Definition 1. Given a strategy e ∈ E(m), a price vector p is said to be
market clearing if

p ∈ R2
++,

∫
T0

x0j(t, p) dµ+

2∑
i=1

eijµ(m)
pi

pj
=

∫
T0

wj(t) dµ+

2∑
i=1

ejiµ(m), (1)

j = 1, 2.

Market clearing price vectors can be normalized by Proposition 2 in
Busetto et al. (2023). Henceforth, we say that a price vector p is normalized
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if p ∈ ∆ where ∆ = {p ∈ R2
+ :

∑2
i=1 p

i = 1}. Moreover, we denote by ∂∆
the boundary of the unit simplex ∆.

We need to repropose now a proposition, proved by Busetto et al. (2023),
which provides a necessary and sufficient condition for the existence of a
market clearing price vector. In order to state it, we introduce the following
preliminary definition.

Definition 2. A square matrix C is said to be triangular if cij = 0 whenever
i > j or cij = 0 whenever i < j.

Proposition 2. Under Assumptions 1, 2, and 3, given a strategy e ∈ E(m),
there exists a market clearing price vector p ∈ ∆\∂∆ if and only if the matrix
E is triangular.

Proof. See the proof of Proposition 5 in Busetto et al. (2023).

We denote by π(·) a correspondence which associates, with each strategy
e ∈ E(m), the set of price vectors p satisfying (1), if E is triangular, and is
equal to {0}, otherwise. A price selection p(·) is a function which associates,
with each strategy selection e ∈ E(m), a price vector p ∈ π(e).

Given a strategy e ∈ E(m) and a price vector p, consider the assignment
determined as follows:

xj(m, e, p) = wj(m)−
2∑

i=1

eji +
2∑

i=1

eij
pi

pj
, if p ∈ ∆ \ ∂∆,

xj(m, e, p) = wj(m), otherwise,

j = 1, 2,

xj(t, p) = x0j(t, p), if p ∈ ∆ \ ∂∆,

xj(t, p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T0.
Given a strategy e ∈ E(m) and a price selection p(·), traders’ final

holdings are determined according to this rule and consequently expressed
by the assignment

x(m) = x(m, e, p(e)),

x(t) = x(t, p(e)),

for each t ∈ T0. Traders’ final holdings constitute an allocation, by Propo-
sition 6 in Busetto et al. (2023). Moreover, it is straightforward to verify
that p(e)x(m, e, p(e)) = p(e)w(m).

We can now provide the definition of a monopoly equilibrium.
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Definition 3. A strategy ẽ ∈ E(m) such that Ẽ is triangular is a monopoly
equilibrium, with respect to a price selection p(·), if

um(x(m, ẽ, p(ẽ)) ≥ um(x(m, e, p(e)),

for each e ∈ E(m).

A monopoly allocation is an allocation x̃ such that x̃(m) = x(m, ẽ, p(ẽ))
and x̃(t) = x0(t, p(ẽ)), for each t ∈ T0, where ẽ is a monopoly equilibrium,
with respect to a price selection p(·).

3 Monopoly equilibrium and invertible demand

As exposed in Busetto et al. (2023), the analysis of the monopoly problem in
bilateral exchange can be simplified by introducing the assumption that the
aggregate demand of the atomless part for the commodity held by the mo-
nopolist is invertible and compared, under this restriction, with the standard
partial equilibrium analysis of monopoly.5 In their Proposition 7, Busetto
et al. (2023) proved that, when wi(m) > 0, the function

∫
T0

x0i(t, ·) dµ is
invertible if and only if, for each x ∈ R++, there is a unique p ∈ ∆\∂∆ such
that x =

∫
T0

x0i(t, p) dµ. Following those authors, we denote p0i(·) denote

the inverse of the function
∫
T0

x0i(t, ·) dµ. In their Proposition 8, Busetto
et al. (2023) also proved that, when the aggregate demand of the atomless
part for the commodity held by the monopolist is invertible, there exists a
unique price selection p̊(·). By analogy with partial equilibrium analysis,
p̊(·) can be interpreted as the inverse demand function of the monopolist.
When the aggregate demand of the atomless part for the commodity held by
the monopolist is invertible, the monopoly equilibrium can be reformulated
as in Definition 3, with respect to monopolist’s inverse demand function p̊(·).

5Theorem 1 in Cheng (1985) offers a set of sufficient conditions under which a system of
demand functions satisfying gross substitutability can be inverted while the main theorem
in Fisher (1972) provides a set of necessary and sufficient conditions on preferences which
generates a system of demand functions satisfying gross substitutability. Recent work
by Diasakos and Gerasimou (2022) provides a different set of necessary and sufficient
conditions on preferences compatible with invertible demand. In this paper, our focus is
on the welfare properties of the monopoly solution and the invertibility of the aggregate
demand of the atomless part for the commodity held by the monopolist is assumed. We
propose to develop in a future paper an analysis of the relationships between the studies
on invertible demand functions mentioned above and our model of monopoly in order
to obtain a specification of the preference conditions which guarantee invertibility in our
context.
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Now, given a price vector (pi, pj) ∈ ∆\∂∆, with some abuse of notation,

we denote by p both the scalar p = pi

pj
and the vector ( p

i

pj
, 1), whenever

wi(m) > 0: it will be clear from the context when p denotes a scalar or a
vector.

By means of the following proposition, we show that, when the aggregate
demand of the atomless for the commodity held by the monopolist is invert-
ible, the inverse demand function of the monopolist is strictly decreasing.

Proposition 3. Under Assumptions 1, 2, and 3, let wi(m) > 0 and let
the function

∫
T0

x0i(t, ·) dµ be invertible on R++. Then, the function p̊(·) is
strictly decreasing on the set {e ∈ E(m) : E is triangular }.
Proof. Let wi(m) > 0 and let the function

∫
T0

x0i(t, ·) dµ is invertible

on R++. The correspondence
∫
T0

X0(t, ·) dµ is upper hemicontinuous at
each p ∈ R++, by the argument used in the proof of Property (ii) in
Debreu (1982). But then, the function {

∫
T0

x01(t, ·) dµ} is continuous as∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ, for each p ∈ R++, by Proposition 1. More-

over, the function
∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ is strictly monotone as it
is continuous and invertible, by Theorem 4.4.2 in Dieudonné (1969). Then,
the function

∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ is strictly decreasing as it di-
verges to +∞ when p converges to 0, by the argument used in the proof of
Proposition 4 in Busetto et al. (2023). But then, the function p̊(·) is strictly
decreasing on the set {e ∈ E(m) : E is triangular } as p̊(·) = p0i(·) on this
set and p0i(·) is strictly decreasing on R++, by Proposition 3.1.9 in Sohrab
(2014).

By means of the following proposition, we then show that, when the
aggregate demand of the atomless part for the commodity held by the mo-
nopolist is invertible and the Walrasian demand of traders in the atomless
part is differentiable, the inverse demand function of the monopolist is dif-
ferentiable with a strictly negative derivative.

Proposition 4. Under Assumptions 1, 2, 3, and 4, let wi(m) > 0 and let
the function

∫
T0

x0i(t, ·) dµ be invertible on R++ and the function x0(t, ·) be
differentiable on R++, for each t ∈ T0. Then, the function p̊(·) is differen-

tiable and dp̊(e)
deij

< 0, at each e ∈ E(m) such that E is triangular.

Proof. Assume, without loss of generality, that w1(m) > 0, that the func-
tion

∫
T0

x01(t, ·) dµ is invertible on R++, and the function x0(t, ·) is differ-
entiable on R++, for each t ∈ T0. We have that

px01(t, p) + x02(t, p) = pw1(t) +w2(t),
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for each t ∈ T0 and for each p ∈ R++, as ut(·) is strongly monotone, for each
t ∈ T0, by Assumption 2. Differentiating with respect to p, we obtain

x01(t, p)dp+ p
dx01(t, p)

dp
dp+

dx02(t, p)

dp
dp = w1(t)dp.

Then, we have that

dx01(t, p)

dp
=

w1(t)− x01(t, p)− dx02(t,p)
dp

p
≤ w1(t)

p
.

But then, the function
∫
T0

x01(t, ·) dµ is differentiable on R++ and

d
∫
T0

x01(t, p) dµ

dp
=

∫
T0

dx01(t, p)

dp
dµ,

for each p ∈ R++, as the function x0(·, p) is integrable, for each p ∈ R++, by
Proposition 1, and the function x0(t, ·) is differentiable on R++, for each t ∈
T0, by Theorem 6.26 in Klenke (2020). We have that

d
∫
T0

x01(t,p) dµ

dp ≤ 0, for

each p ∈ R++, as
∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ is strictly decreasing by the

argument used in the proof of Proposition 3. Suppose that
d
∫
T0

x01(t,p̄) dµ

dp = 0

at some p̄ ∈ R++. Then, it must be that
d
∫
T̄ x01(t,p̄) dµ

dp = 0 as µ(T̄ ) > 0.

Consider a trader τ ∈ T0. Then, it must be that dx01(τ,p̄)
dp = 0. We have that

x01(τ, p̄) > 0, by the argument used in the proof of Proposition 5 in Busetto
et al. (2023). Suppose that x02(τ, p̄) > 0. For commodity 1, the substitution
effect is negative and the income effect is nonpositive, by Assumption 4.

Then, it must be that dx01(τ,p̄)
dp < 0, by the Slutsky equation, a contradiction.

Suppose that x02(τ, p̄) = 0. Then, we have that x01(τ, p̄) = w2(τ)
p̄ . But then,

we have that dx01(τ,p̄)
dp = −w2(τ)

p̄2
< 0, a contradiction. Therefore, it must be

that
d
∫
T0

x01(t,p) dµ

dp < 0, for each p ∈ R++. Hence, we have that dp̊(e)
deij

< 0, at

each e ∈ E(m), as dp01(x)
dx = (

d
∫
T0

x01(t,p) dµ

dp )−1 < 0, by the inverse function
theorem.
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4 Allocative efficiency, Pareto optimality, and core:
non-disadvantageous monopoly

Bork (1978) provocatively re-founded antitrust law on economic theory. In
particular, he identified the main goal of antitrust with allocative efficiency.
After a long standing debate on antitrust, Brown and Lee (2008), in a sem-
inal paper in which analyzes antitrust issues within a general equilibrium
framework, unambiguously interpreted allocative efficiency as Pareto opti-
mality.

In the recasting of antitrust analysis based on the Edgeworth box model
we propose in this paper, we follow this interpretation and we establish
the optimality properties of the monopoly equilibrium introduced in the
previous section.

In order to develop our analysis, we need to introduce the following
further definitions. An allocation x is said to be individually rational if
ut(x(t)) ≥ ut(w(t)), for each t ∈ T . Moreover, an allocation x is said to
be Pareto optimal if there is no allocation y such that ut(y(t)) ≥ ut(x(t)),
for each t ∈ T , and ut(y(t)) > ut(x(t)), for a nonnull set of traders t in
T . According to Shitovitz (1973), an efficiency equilibrium is defined as
a pair (p̂, x̂), where the price vector p̂ and the allocation x̂ are such that
ut(x̂(t)) ≥ ut(y), for all y ∈ {x ∈ R2

+ : p̂x = p̂x(t)}, for each t ∈ T .6

Finally, an efficiency allocation is an allocation x̂ for which there exists a
price vector p̂ ∈ R2

++ such that the pair (p̂, x̂) is an efficiency equilibrium.
Borrowing from Shitovitz (1973), we show now a proposition which es-

tablishes that a monopoly allocation is Pareto optimal if and only if it is an
efficiency allocation. It provides a rationale for Pareto optimality as a crite-
rion for allocative efficiency on the basis of the first and second fundamental
theorems of welfare economics.

Proposition 5. Under Assumptions 1, 2, and 3, let wi(m) > 0 and let x̃
be monopoly allocation. Then, the monopoly allocation x̃ is Pareto optimal
if and only if it is an efficiency allocation.

Proof. Let wi(m) > 0 and let x̃ be a monopoly allocation. Suppose
that the monopoly allocation x̃ is Pareto optimal. We adapt to our frame-
work the argument used by Shitovitz (1973) to prove the corollary to his
Lemma 1. It is straightforward to verify that x̃ is individually rational.

6The notion of efficiency equilibrium coincides with that of equilibrium relative to a
price system which was used by Debreu (1959) to prove the first and the second funda-
mental theorems of welfare economics.
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Let G̃ → P(R2) be a correspondence such that G̃(t) = {x − x̃(t) : x ∈
R2

+ and ut(x) > ut(x̃(t))}, for each t ∈ T . Moreover, let
∫
T G̃(t) dµ =

{
∫
T g̃(t) dµ : g̃(t) is integrable and g̃(t) ∈ G̃(t), for each t ∈ T}. The set

{x ∈ R2
+ : ut(x) ≥ ut(x̃)} is convex as um(·) is strictly quasi-concave, by

Assumption 2. Then, it is straightforward to verify that the set G̃(m) is
convex. But then,

∫
T G̃(t) dµ is convex, by Theorem 1 in Shitovitz (1973).

We now prove that 0 /∈
∫
T G̃(t) dµ. Suppose that 0 ∈

∫
T G̃(t) dµ. Then,

there is an assignment y such that ut(y(t)) > ut(x̃(t)), for each t ∈ T , which
is an allocation as

∫
T y(t) dµ =

∫
T x̃(t) dµ =

∫
T w(t) dµ. But then, x̃ is not

Pareto optimal, a contradiction. Therefore, it must be that 0 /∈
∫
T G̃(t) dµ.

Then, there exists a vector q ∈ R2 such that (q ̸= 0) and q
∫
T G̃(t) dµ ≥ 0, by

the supporting hyperplane theorem. We know that q ∈ R2
++, by the proof

of Lemma 1 in Shitovitz (1973). Let p̂ = qi

qj
. Then, the pair (p̂, x̃) is an

efficiency equilibrium, by Lemma 1 in Shitovitz (1973). Therefore, the allo-
cation x̃ is an efficiency allocation. Conversely, suppose that the allocation
x̃ is an efficiency allocation. Then, the allocation x̃ is Pareto optimal, by
the first fundamental theorem of welfare economics. Hence, the monopoly
allocation x̃ is Pareto optimal if and only if it is an efficiency allocation.

Brown and Lee (2008) observed: “[...] The nexus between Pareto opti-
mality and antitrust law has been all but overlooked in the economic litera-
ture due to the singular focus on the deadweight loss analysis” (see p. 56).
And they added: “Our analysis restores this nexus and suggests that the
proper benchmark for measuring the cost of monopoly should be a Pareto
optimal state of the economy, not simply competitive markets” (see pp. 56-
57). Our Proposition 5 is linked to the work of these authors since it exhibits
the nexus between Pareto optimality and antitrust in terms of allocative ef-
ficiency, in an Edgeworth box.

The next proposition shows a nexus between the Pareto-optimality prop-
erties of monopoly allocations and perfect competition. Indeed, it establishes
that, when the aggregate demand of the atomless part for the commodity
held by the monopolist is invertible and the Walrasian demand of each trader
in the atomless part is differentiable, the set of Pareto optimal monopoly
allocations and the set of monopoly allocations which are also Walrasian
coincide.

Proposition 6. Under Assumptions 1, 2, 3, and 4, let wi(m) > 0 and let
the function

∫
T0

x0i(t, ·) dµ be invertible on R++ and the function x0(t, ·)
be differentiable on R++, for each t ∈ T0. Moreover, let ẽ ∈ E(m) be a
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monopoly equilibrium, with respect to the unique price selection p̊(·), and
let p̃ = p̊(ẽ), x̃(m) = x(m, ẽ, p̊(ẽ)), and x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0.
Then, the monopoly allocation x̃ is Pareto optimal if and only if the pair
(p̃, x̃) is a Walras equilibrium.

Proof. Assume, without loss of generality, that w1(m) > 0 and w2(m) = 0.
Let ẽ ∈ E(m) be a monopoly equilibrium, with respect to the unique price
selection p̊(·). Suppose that the monopoly allocation x̃ is Pareto optimal.
Moreover, suppose that x̃2(t) = 0, for each t ∈ T0. Then, we have that

x̃(m) = (w1(m)−
∫
T0

x01(t, p̊(ẽ)) dµ,

∫
T0

w2(t) dµ).

But then, we have that

dum(x̃(m))

de
= −

d
∫
T0

x01(t, p̊(ẽ))

dp

dp̊(ẽ)

de12
< 0,

by Proposition 4, a contradiction. Therefore, there must be a coalition
O ⊆ T0 such x̃2(t) ≫ 0, for each t ∈ O. There exists a vector p̂ ∈ R2

++ such
that the pair (p̂, x̃) is an efficiency equilibrium, by Proposition 5. Consider
a trader τ ∈ O. We have that

∂uτ (x̃(τ))
∂x1

∂uτ (x̃(τ))
∂x2

= p̃,

as x̃(t) = x0(t, p(ẽ)) ≫ 0, for each t ∈ O. It must also be that

∂uτ (x̃(τ))
∂x1

∂uτ (x̃(τ))
∂x2

= p̂,

as the pair (p̂, x̂) is an efficiency equilibrium, for each t ∈ O. Then, we have
that p̃ = p̂. But then, x̃ is such that p̃x̃(t) = p̃w(t) and ut(x̃(t)) ≥ ut(y),
for all y ∈ {x ∈ R2

+ : p̃x = p̃w(t)}, for each t ∈ T . Therefore, the pair
(p̃, x̃) is a Walras equilibrium. Conversely, suppose that the pair (p̃, x̃) is
a Walras equilibrium. Then, it is straightforward to show that it is also
an efficiency equilibrium. But then, the allocation x̃ is Pareto optimal by
the first fundamental theorem of welfare economics. Hence, the monopoly
allocation x̃ is Pareto optimal if and only if the pair (p̃, x̃) is a Walras
equilibrium.
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The next proposition provides a necessary and sufficient condition for a
monopoly allocation to be Walrasian.

Proposition 7. Under Assumptions 1, 2, 3, and 4, let wi(m) > 0 and let
the function

∫
T0

x0i(t, ·) dµ be invertible on R++ and the function x0(t, ·)
be differentiable on R++, for each t ∈ T0. Moreover, let ẽ ∈ E(m) be a
monopoly equilibrium, with respect to the unique price selection p̊(·), and
let p̃ = p̊(ẽ), x̃(m) = x(m, ẽ, p̊(ẽ)), and x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0.
Then, the pair (p̃, x̃) is a Walras equilibrium if and only if ẽij = wi(m).

Proof. Assume, without loss of generality, that w1(m) > 0 and w2(m) =
0. Let ẽ ∈ E(m) be a monopoly equilibrium, with respect to the unique
price selection p̊(·). Suppose that the pair (p̃, x̃) is a Walras equilibrium.
Moreover, suppose that x̃(m) ≫ 0. It must be that

∂um(x̃(m))
∂x1

∂um(x̃(m))
∂x2

= p̃,

as the pair (p̃, x̃) is a Walras equilibrium. Moreover, we have that

−∂um(x̃(m))

∂x1
+

∂um(x̃(m))

∂x2
(p̃+

dp̊(ẽ)

de12
ẽ12) = 0,

as ẽ is a monopoly equilibrium. Then, we obtain that

∂um(x̃(m))
∂x1

∂um(x̃(m))
∂x2

̸= p̃,

as dp̊(ẽ)
deij

< 0, by Proposition 4, a contradiction. Therefore, it must be that

ẽij = wi(m). Conversely, suppose that ẽij = wi(m). We have that x̃(m) =
(0,w1(m)p̃). Let x̃2(x1) be a function such that um(x1, x2(x1)) = um(x̃(m)),
for each 0 ≤ x1 ≤ w1(m). We have that

−∂um(x̃(m))

∂x1
+

∂um(x̃(m))

∂x2
(p̃+

dp̊(ẽ)

de12
ẽ12) ≥ 0,

as ẽ12 = w1(m). Then, it must be that

−∂um(x̃(m))

∂x1
+

∂um(x̃(m))

∂x2
p̃ > 0,

as dp̊(ẽ)
deij

< 0, by Proposition 4. But then, we have that dx̃2

dx1 > −p̃, for

each 0 ≤ x1 ≤ w1(m), as um(·) is strictly quasi-concave, by Assumption 2.
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Suppose that there exists a commodity bundle x̄ ∈ {x ∈ R2
+ : p̃x = p̃w(m)}

such that um(x̄) > um(x̃(m)). Then, it must be that x̄2 > x̃2(x̄1) as um(·) is
strongly monotone, by Assumption 2. But then, by the mean value theorem,
there exists some x′ such that 0 < x′ < x̄1 and such that

dx̃2(x′1)

dx1
=

x̃2(x̄1)− x̃2(0)

x̄1 − 0
< −p̃,

a contradiction. Therefore, we have that um(x̃(m) ≥ um(y), for all y ∈ {x ∈
R2

+ : p̃x = p̃w(m)}. Hence, the pair (p̃, x̃) is a Walras equilibrium if and
only if ẽij = wi(m).

The following proposition is an immediate consequence of Proposition
7: under the same assumptions, it provides a characterization of Pareto
optimal monopoly allocations.

Proposition 8. Under Assumptions 1, 2, 3, and 4, let wi(m) > 0 and let
the function

∫
T0

x0i(t, ·) dµ be invertible on R++ and the function x0(t, ·)
be differentiable on R++, for each t ∈ T0. Moreover, let ẽ ∈ E(m) be a
monopoly equilibrium, with respect to the unique price selection p̊(·), and
let p̃ = p̊(ẽ), x̃(m) = x(m, ẽ, p̊(ẽ)), x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0. Then,
x̃ is Pareto optimal if and only if ẽij = wi(m).

Proof. Let wi(m) > 0 and let ẽ ∈ E(m) be a monopoly equilibrium, with
respect to the unique price selection p̊(·). Suppose that x̃ is Pareto optimal.
Then, the pair (p̃, x̃) is a Walras equilibrium, by Proposition 6. But then,
we have that ẽij = wi(m), by Proposition 7. Conversely, suppose that
ẽij = wi(m). Then, the pair (p̃, x̃) is a Walras equilibrium, by Proposition
7. But then, x̃ is Pareto optimal, by Proposition 6. Hence, x̃ is Pareto
optimal if and only if ẽij = wi(m).

We provide now an example showing that Propositions 6, 7, and 8 hold
non-vacuously.

Example 1. Consider the following specification of an exchange economy
satisfying Assumptions 1, 2, 3, and 4. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1,
w(m) = (1, 0), um(x) = 1

8x
1 +

√
x2, T0 is taken with Lebesgue measure,

w(t) = (0, 1), ut(x) =
√
x1 + x2, for each t ∈ T0. Then, there is a unique

monopoly allocation x̃ which coincides with the unique Walras allocation
x∗.

Proof. The unique monopoly equilibrium is the strategy ẽ ∈ E(m), where
ẽ12 = 1, and the allocation x̃ such that (x̃1(m), x̃2(m)) = (0, 12) and (x̃1(t),
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x̃2(t)) = (1, 12), for each t ∈ T0, is the unique monopoly allocation. The
unique Walras equilibrium is the pair (p∗,x∗), where p∗ = 1

2 , and the alloca-
tion x∗ is such that (x∗1(m),x∗2(m)) = (0, 12), and (x∗1(t),x∗2(t)) = (1, 12),
for each t ∈ T0. Hence, there is a unique monopoly allocation x̃ which
coincides with the unique Walras allocation x∗.

We consider now the relationship between the set of monopoly allocations
and the set of allocations belonging to the core. The core can be seen as
a criterion of allocative efficiency stricter than Pareto optimality as is well
known that any allocation in the core is Pareto optimal whereas the converse
does not necessarily hold.

We say that an allocation y dominates an allocation x via a coalition
S if ut(y(t)) ≥ ut(x(t)), for each t ∈ S, ut(y(t)) > ut(x(t)) for a non-null
subset of traders t in S, and

∫
S y(t) dµ =

∫
S w(t) dµ. The core is the set of

all allocations which are not dominated via any coalition.
The following proposition is a straightforward consequence of Proposi-

tion 6: under the same assumptions, it establishes an equivalence between
the core and the set of monopoly allocations, whenever the latter are also
Walrasian.

Proposition 9. Under Assumptions 1, 2, 3, and 4, let wi(m) > 0 and let
the function

∫
T0

x0i(t, ·) dµ be invertible on R++ and the function x0(t, ·)
be differentiable on R++, for each t ∈ T0. Moreover, let ẽ ∈ E(m) be a
monopoly equilibrium, with respect to the unique price selection p̊(·), and
let p̃ = p̊(ẽ), x̃(m) = x(m, ẽ, p̊(ẽ)), and x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0.
Then, the monopoly allocation x̃ is in the core if and only if the pair (p̃, x̃)
is a Walras equilibrium.

Proof. Let ẽ ∈ E(m) be a monopoly equilibrium, with respect to a price
selection p(·). Suppose that the monopoly allocation x̃ is in the core. Then,
x̃ is Pareto optimal. But then, the pair (p̃, x̃) is a Walras equilibrium, by
Proposition 6. Conversely, suppose that the pair (p̃, x̃) is a Walras equilib-
rium. Then, the allocation x̃ is in the core, by the same argument used by
Aumann (1964) in the proof of his main theorem. Hence, the allocation x̃
is in the core if and only if the pair (p̃, x̃) is a Walras equilibrium.

The next proposition is an immediate consequence of Proposition 8: un-
der the same assumptions, it provides a characterization of monopoly allo-
cations which are in the core.

Proposition 10. Under Assumptions 1, 2, 3, and 4, let wi(m) > 0 and
let the function

∫
T0

x0i(t, ·) dµ be invertible on R++ and the function x0(t, ·)
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be differentiable on R++, for each t ∈ T0. Moreover, let ẽ ∈ E(m) be a
monopoly equilibrium, with respect to the unique price selection p̊(·), and
let p̃ = p̊(ẽ), x̃(m) = x(m, ẽ, p̊(ẽ)), and x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0.
Then, x̃ is in the core if and only if ẽij = wi(m).

Proof. Let ẽ ∈ E(m) be a monopoly equilibrium, with respect to the price
selection p̊(·). Suppose that x̃ is in the core. Then, x̃ is Pareto optimal. But
then, we have that ẽij = wi(m), by Proposition 8. Conversely, suppose that
ẽij = wi(m). Then, the pair (p̃, x̃) is a Walras equilibrium, by Proposition
7. But then, x̃ is in the core, by the same argument used by Aumann (1964)
in the proof of his main theorem. Hence, x̃ is in the core if and only if
ẽij = wi(m).

Example 1 shows that Propositions 6, 7, and 8 hold non-vacuously. More-
over, for the same exchange economy, we can now show that the core does
not coincide with the set of Walras equilibria.

Example 1′. Consider the exchange economy specified in Example 1. Then,
the core does not coincide with the set of Walras equilibria.

Proof. The unique Walras equilibrium is the pair (p∗,x∗), where p∗ = 1
2 and

the allocation x∗ is such that (x∗1(m),x∗2(m)) = (0, 12), and (x∗1(t),x∗2(t))
= (1, 12), for each t ∈ T0. The core consists of all the allocations x of the form
(x1(m),x2(m)) = (0, 1−α) and (x1(t),x2(t)) = (1, α), for each t ∈ T0, where
0 ≤ α ≤ 1

2 , as for such allocations the pair (p∗,x) is an efficiency equilibrium
and p∗x(t) ≤ p∗w(t), for each t ∈ T0, by Theorem A∗ in Shitovitz (1973).
Hence, the core does not coincide with the set of Walras equilibria.

In our Example 1′ – as in Example 1 in Shitovitz (1973) – the unique
Walras allocation is worse, in terms of the monopolists utility, than any
other allocation in the core. Shitovitz (1973), at the end of a discussion of his
result, stressed this point as an open problem, which was in turn reproposed
by Aumann (1973) through the following conjecture: “In a monopolistic
market, for each core allocation x there is a competitive allocation y whose
utility to the monopolist is ≤ that of x” (see p. 1). Nonetheless, this author
provided three examples, in the same bilateral monopolistic framework of
Shitovitz’ Example 1, which invalidate his initial conjecture since they show
that monopoly may be, according to his terminology, “disadvantageous.” As
already reminded, Aumann (1973) first of all stressed the relevance of the
double characterization of the monopolist both as an atom and as an agent
who initially holds a corner on one of the two commodities (see p. 2 ). Then,
in the discussion of his counterintuitive examples he suggested: “Perhaps
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what is needed at this stage is a careful reappraisal of the ideas underlying
the use of core in economic analysis” (see p. 9). Moreover, in considering his
results from the point of view of the classical economic theory, he affirmed:
“The kind of phenomenon illustrated for the core [...] is of course impossible
in classical theory. If the monopolist sets prices, he cannot end up worse off
that at the competitive equilibrium, since he always has the option of setting
the prices equal to competitive prices” (see p. 9). It is at this point that,
in the passage quoted in the Introduction, he affirmed the need of a theory
that is applicable in any market, and when applied to a monopoly, yields the
price-taking mechanism (see p. 10). Then he added: “To put the argument
differently, one feels on an intuitive, common sense level that the monopolist
has a distinct advantage; but economic theory, rather than explaining this
phenomenon, simply states it in a specific form. For an explanation, one
looks to game theory; but evidently, the game-theoretic notion of core is not
the proper vehicle for such an explanation” (see p. 10). However, Aumann
(1973) did not develop a full theory of a price-setting monopolist in bilateral
exchange.

Borrowing from Busetto et al. (2020), Busetto et al. (2023) provided a
sequential reformulation of the mixed version of the Shapley window model
for the same bilateral exchange economy considered in Section 2 above.
Their sequential structure was expressed as a two-stage game with observed
actions where the quantity-setting monopolist m – an atom with a “corner”
of one of the commodities like in Aumann (1973) – moves first and the
atomless part moves in the second stage, after observing the moves of the
monopolist in the first stage. This two-stage structure allowed the authors
to provide a game theoretical foundation of the quantity-setting monopoly
solution: indeed they proved that the set of the allocations corresponding
to a monopoly equilibrium and the set of those corresponding to a subgame
perfect equilibrium of the two-stage game coincide.

The game theoretical foundation of monopoly equilibrium proposed by
Busetto et al. (2023) allows each trader to behave strategically and en-
dogenously generates “the price-taking mechanism” concerning the atomless
part, as wished by Aumann (1973) in the passage mentioned above, while
consolidating the structural monopolistic power of the atom as a first mover
in the two-stage game.

We now use our model of a quantity-setting monopolist to confirm the
other argument raised by Aumann (1973), concerning the impossibility of a
disadvantageous monopoly within the“classical theory”: the following two
propositions show, respectively, that monopoly is non-disadvantageous, that
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the price at a monopoly equilibrium is not inferior to the price at a Walras
equilibrium, and that the quantity supplied by the monopolist of the com-
modity he holds at a monopoly equilibrium is not superior to the quantity
supplied at a Walras equilibrium.

Proposition 11. Under Assumptions 1, 2, and 3, let wi(m) > 0 and let the
function

∫
T0

x0i(t, ·) dµ be invertible on R++. If x̃ is a monopoly allocation
and x∗ is a Walras allocation, then um(x̃(m)) ≥ um(x∗(m)).

Proof. Assume, without loss of generality, that w1(m) > 0 and that the
function

∫
T0

x01(t, ·) dµ is invertible on R++. Let x̃ be a monopoly allocation
and let x∗ be a Walras allocation. Then, there exists a strategy ẽ ∈ E(m)
which is a monopoly equilibrium, with respect to the unique price selection
p̊(·), and a price p∗ such that the pair (p∗,x∗) is a Walras equilibrium. We
have that ∫

T0

x01(t, p∗) dµ =

∫
T0

x∗1(t) dµ = w1(m)− x∗1(m),

as x∗ is a Walras allocation. Suppose that x∗1(m) = w1(m). Then, we have
that

∫
T0

x01(t, p∗) dµ = 0. But then, we have that x01(t, p∗) = 0, for each t ∈
T0. Consider a trader τ ∈ T0. It must be that x02(τ, p∗) = w2(τ) > 0 as uτ (·)
is strongly monotone, by Assumption 2. Then, we have that ∂uτ (x0(τ,p∗))

∂x1 =

+∞, by Assumption 2, and ∂uτ (x0(τ,p∗))
∂x1 ≤ λp∗ and ∂uτ (x0(τ,p∗))

∂x2 = λ, by the
necessary conditions of the Kuhn-Tucker theorem. But then, it must be
that ∂uτ (x̂(τ))

∂x2 = +∞ as λ = +∞, contradicting the assumption that uτ (·)
is differentiable. Therefore, we have that x∗1(m) < w1(m). Let e∗ ∈ E(m)
be a strategy such that e∗12 = w1(m)− x∗1(m). We have that∫
T0

x01(t, p∗) dµ =

∫
T0

x∗1(t) dµ = w1(m)−x∗1(m) = e∗12 =

∫
T0

x01(t, p̊(e∗)),

as the pair (p∗,x∗) is a Walras equilibrium and the function p̊(·) is the unique
price selection. Then, it must be that p∗ = p̊(e∗). We have that

x∗1(m) = w1(m)− e∗12 = x1(m, e∗, p̊(e∗))

and
x∗2(m) = p∗w1(m)− p∗x∗1(m) = p∗e∗12 = x2(m, e∗, p̊(e∗)).

Then, we have that

um(x(m, ẽ, p̊(ẽ))) = um(x̃(m)) ≥ um(x∗(m)) = um(x(m, e∗, p̊(e∗)),
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as the strategy ẽ ∈ E(m) is a monopoly equilibrium. Hence, if x̃ is a
monopoly allocation and x∗ is a Walras allocation, then um(x̃(m))
≥ um(x∗(m)).

Proposition 12. Under Assumptions 1, 2, and 3, let wi(m) > 0 and let
the function

∫
T0

x0i(t, ·) dµ be invertible on R++. If ẽ ∈ E(m) is a monopoly
equilibrium, with respect to the unique price selection p̊(·), and the pair
(p∗,x∗) is a Walras equilibrium, then there exists a strategy e∗ ∈ E(m) such
that p∗ = p̊(e∗), p̃ ≥ p∗, where p̃ = p̊(ẽ), and ẽij ≤ e∗ij

Proof. Assume, without loss of generality, that w1(m) > 0 and that the
function

∫
T0

x01(t, ·) dµ is invertible on R++. Let ẽ ∈ E(m) be a monopoly
equilibrium, with respect to the unique price selection p̊(·), and let p̃ = p̊(ẽ),
x̃(m) = x(m, ẽ, p̊(ẽ)), and x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0. Moreover,
let the pair (p∗,x∗) be a Walras equilibrium. There exists a strategy e∗ ∈
E(m) such that e∗12 = w1(m) − x∗1(m) and such that p∗ = p̊(e∗), by the
same argument used in the proof of Proposition 11. Suppose that p̃ <
p∗. Consider a trader τ ∈ T0. Suppose that x∗(τ) = (0,w2(τ)). Then,
it must be that x̃(τ) = (0,w2(τ)) as p̃ < p∗. But then, we have that
uτ (x̃(τ)) = uτ (x

∗(τ)). Suppose that x∗(τ) ̸= (0,w2(τ)). Then, it must be
that p̃x∗(τ) < w2(τ). But then, there exists a commodity bundle x′ such
that p̃x′ = w2(τ) and uτ (x

′) > uτ (x
∗(τ)) as uτ (·) is strongly monotone, by

Assumption 2. Thus, we have that uτ (x̃(τ)) > uτ (x
∗(τ)) as uτ (x̃(τ)) ≥

uτ (x
′). Therefore, we have that ut(x̃(t)) ≥ ut(x

∗(t)), for each t ∈ T0.
Moreover, we have that um(x̃(m)) ≥ um(x∗(m)), by Proposition 11. It
must be that

∫
T0

x01(t, p∗) dµ > 0, by the same argument used in the proof
of Proposition 11. Consider a trader τ ∈ T0. Then, we have that x∗(τ) ̸=
(0,w2(τ)). But then, it must be that uτ (x̃(τ)) > uτ (x

∗(τ)), by the previous
argument. Therefore, the Walras allocation x∗ is not Pareto optimal as that
ut(x̃(t)) > ut(x

∗(t)), for each t ∈ T0, a contradiction. Hence, we have that
p̃ ≥ p∗ and ẽij ≤ e∗ij as the function p̊(·) is strictly decreasing on the set
{e ∈ E(m) : E is triangular }, by Proposition 3.

5 Consumer welfare and atomless part welfare:
advantageous monopoly

In his celebrated paper, Lande (1982) criticized the path-breaking approach
proposed by Bork for antitrust, based on allocative efficiency. He suggested
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that consumer welfare instead of allocative efficiency should be the goal
promoted by the Sherman Act. Within our analysis of monopoly in the
Edgheworth box, consumer welfare can be interpreted as the welfare of the
atomless part of the economy.

The next proposition shows that monopoly is non-advantageous com-
pared with “perfect competition,” for each trader in the atomless part.

Proposition 13. Under Assumptions 1, 2, and 3, let wi(m) > 0 and let the
function

∫
T0

x0i(t, ·) dµ be invertible on R++. If x̃ is a monopoly allocation
and x∗ is a Walras allocation, then ut(x̃(t)) ≤ ut(x

∗(t)), for each t ∈ T0.

Proof. Assume, without loss of generality, that w1(m) > 0 and that the
function

∫
T0

x01(t, ·) dµ is invertible on R++. Let x̃ be a monopoly allocation
and let x∗ be a Walras allocation. Then, there exists a strategy ẽ ∈ E(m)
which is a monopoly equilibrium, with respect to the unique price selection
p̊(·), and a price p∗ such that the pair (p∗,x∗) is a Walras equilibrium. Let
p̃ = p̊(ẽ). We have that p̃ ≥ p∗, by Proposition 12. Consider a trader τ ∈ T0.
Consider the case where p̃ = p∗. Then, it must be that uτ (x̃(τ)) = uτ (x

∗(τ)).
Consider the case where p̃ > p∗. Suppose that x̃(τ) = (0,w2(τ)). Then,
it must be that x∗(τ) = (0,w2(τ)) as p̃ > p∗. But then, we have that
uτ (x̃(τ)) = uτ (x

∗(τ)). Suppose that x̃(τ) ̸= (0,w2(τ)). Then, it must be
that p∗x̃(τ) < w2(τ). But then, there exists a commodity bundle x′ such
that p∗x′ = w2(τ) and uτ (x

′) > uτ (x̃(τ)) as uτ (·) is strongly monotone, by
Assumption 2. Thus, we have that uτ (x̃(τ)) < uτ (x

∗(τ)) as uτ (x
∗(τ)) ≥

uτ (x
′). Hence, we have that ut(x̃(t)) ≤ ut(x

∗(t)), for each t ∈ T0.

Example 1 in Section 4 exhibits a case of non-disadvantageous monopoly
as the unique monopoly allocation coincides with the unique Walras allo-
cation. In contrast, the next example exhibits the case of an advantageous
monopoly as the monopolist strictly prefers his assignment at the unique
monopoly allocation to that at the unique Walras allocation.

Example 2. Consider the following specification of an exchange economy
satisfying Assumptions 1, 2, 3, and 4. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1,
w(m) = (1, 0), um(x) = 1

2x
1 +

√
x2, T0 is taken with Lebesgue measure,

w(t) = (0, 1), ut(x) =
√
x1 + x2, for each t ∈ T0. Then, there is a

unique monopoly allocation x̃ and a unique Walras allocation x∗ such that
um(x̃(m)) > um(x∗(m)).

Proof. The unique monopoly equilibrium is the strategy ẽ ∈ E(m), where
ẽ12 = 1

4 , and the allocation x̃ such that x̃(m) = (34 ,
1
4) and x̃(t) = (14 ,

3
4),

for each t ∈ T0, is the unique monopoly allocation. The unique Walras
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equilibrium is the pair (p∗,x∗), where p∗ = (14)
1
3 , and the allocation x∗ such

that (x∗1(m),x∗2(m)) = (1 − (14)
1
3 , (14)

2
3 ), and (x∗1(t),x∗2(t)) = ((14)

1
3 , 1 −

(14)
2
3 ), for each t ∈ T0, is the unique Walras allocation. Moreover, we have

that

um(x̃(m)) = um

(
3

4
,
1

4

)
=

7

8
>

1

2
+
1

2
(
1

4
)
1
3 = um

(
1− (

1

4
)
1
3 , (

1

4
)
2
3

)
= um(x∗).

Hence, there is a unique monopoly allocation x̃ and a unique Walras allo-
cation x∗ such that um(x̃(m)) > um(x∗(m)).

The following result is a corollary to Proposition 11 establishing that
monopoly is advantageous with respect to all Walras allocations which are
not monopoly allocations.

Corollary 1. Under Assumptions 1, 2, and 3, let wi(m) > 0 and the
function

∫
T0

x0i(t, ·) dµ be invertible on R++. If x̃ is a monopoly allocation,
then um(x̃(m)) > um(x∗(m)), for each Walras allocation x∗ which is not a
monopoly allocation.

Proof. Assume, without loss of generality, that w1(m) > 0 and that the
function

∫
T0

x01(t, ·) dµ is invertible on R++. Let x̃ be a monopoly alloca-
tion and let x∗ be a Walras allocation which is not a monopoly allocation.
Then, it must be that x̃ ̸= x∗. There exists a strategy ẽ ∈ E(m) which
is a monopoly equilibrium, with respect to the unique price selection p̊(·),
and a relative price p∗ such that the pair (p∗,x∗) is a Walras equilibrium.
Moreover, there exists a strategy e∗ such that e∗12 = w1(m) − x∗1(m) and
such that p∗ = p̊(e∗), by the same argument used in the proof of Proposition
11. We have that

x1(m, e∗, p̊(e∗)) = w1(m)− e∗12 = x∗1(m)

and
x2(m, e∗, p̊(e∗)) = p∗e∗12 = p∗w1(m)− p∗x∗1(m) = x∗2(m).

Suppose that um(x̃(m)) = um(x∗(m). Then, we have that

um(x(m, e∗, p̊(e∗))) = um(x∗(m)) = um(x̃(m)) = um(x(m, ẽ, p̊(ẽ)))

≥ um(x(m, e, p̊(e))),

for each e ∈ E(m), as the strategy ẽ is a monopoly equilibrium. But then,
the strategy e∗ is a monopoly equilibrium, a contradiction. Hence, it must
be that um(x̃(m)) > um(x∗(m)), as um(x̃(m)) ≥ um(x∗(m)), by Proposition
11.
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The next result – a corollary to Proposition 12 – shows that, when
monopoly is advantageous, the price at a monopoly equilibrium is greater
than the price at any non-monopolistic Walras equilibrium and the quantity
supplied by the monopolist of the commodity he holds at a monopoly equi-
librium is lower than the quantity supplied at any non-monopolistic Walras
equilibrium.

Corollary 2. Under Assumptions 1, 2, and 3, let wi(m) > 0 and the
function

∫
T0

x0i(t, ·) dµ be invertible on R++. If ẽ ∈ E(m) is a monopoly
equilibrium, with respect to the unique price selection p̊(·), and the pair
(p∗,x∗) is a Walras equilibrium such that x∗ is not a monopoly allocation,
then there exists a strategy e∗ ∈ E(m) such that p∗ = p̊(e∗), p̃ > p∗, where
p̃ = p̊(ẽ), and ẽij < e∗ij

Proof. Assume, without loss of generality, that w1(m) > 0 and that the
function

∫
T0

x01(t, ·) dµ is invertible on R++. Let ẽ ∈ E(m) be a monopoly
equilibrium, with respect to the unique price selection p̊(·), and let p̃ = p̊(ẽ),
x̃(m) = x(m, ẽ, p̊(ẽ)), and x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0. Moreover, let
the pair (p∗,x∗) be a Walras equilibrium such that x∗ is not a monopoly
allocation. Then, it must be that x̃ ̸= x∗. There exists a strategy e∗

such that e∗12 = w1(m) − x∗1(m) and such that p∗ = p̊(e∗), by the same
argument used in the proof of Proposition 11. It must be that ẽij ̸= e∗ij
as x̃(m) ̸= x∗(m). Then, we have that p̃ = p̊(ẽ) ̸= p̊(e∗) = p∗ as the
function p̊(·) is strictly decreasing on the set {e ∈ E(m) : E is triangular },
by Proposition 3. Hence, we have that p̃ > p∗ as p̃ ≥ p∗, by Proposition
12, and ẽij < e∗ij as the function p̊(·) is strictly decreasing on the set {e ∈
E(m) : E is triangular }, by Proposition 3.

The next corollary to Proposition 13 shows that monopoly is disad-
vantageous with respect to all Walras allocations which are not monopoly
allocations, for each trader in the atomless part.

Corollary 3. Under Assumptions 1, 2, and 3, let wi(m) > 0 and let the
function

∫
T0

x0i(t, ·) dµ be invertible on R++. If x̃ is a monopoly allocation,
then ut(x̃(t)) < ut(x

∗(t)), for each t ∈ T0, and for each Walras allocation x∗

which is not a monopoly allocation.

Proof. Assume, without loss of generality, that w1(m) > 0 and that the
function

∫
T0

x01(t, ·) dµ is invertible on R++. Let x̃ be a monopoly allocation
and let x∗ be a Walras allocation which is not a monopoly allocation. Then,
there exists a strategy ẽ ∈ E(m) which is a monopoly equilibrium, with
respect to the unique price selection p̊(·), and a price p∗ such that the pair
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(p∗,x∗) is a Walras equilibrium. Let p̃ = p̊(ẽ). We have that p̃ > p∗, by
Corollary 2. Hence, we have that ut(x̃(t)) < ut(x

∗(t)), for each t ∈ T0, by
the same argument used in the proof of Proposition 13.

Recently, a new school in antitrust, named “New Brandeis School,” has
emerged. According to Khan (2018) this school “signals a break with the
Chicago School, whose ideas set antitrust on a radically new course starting
in the 1970s and 1980s and continue to underpin competition policy in the
USA today” (see p. 131). The new school takes inspiration from the ideas of
Judge Louis D. Brandeis whose antimonopoly attitude was expressed by the
famed credo about the “curse of bigness” (see Brandeis (1914)). Our model
incorporates the Brandeisian notion of “bigness” in that the monopolist m
is an atom. As we have previously reminded, the two-stage foundation of
the quantity-setting monopoly model provided by Busetto et al. (2023)
captures this structural feature conferring to the monopolist the prerogative
to convert his “bigness” into market power through his strategic behavior.

We can now show that, when the monopolist, in exerting his power, does
not behave as if he were a price-taker, monopoly allocations are not Pareto
optimal and they are advantageous for the monopolist and disadvantageous
for each trader in the atomless part compared with Walras allocations.

Proposition 14. Under Assumptions 1, 2, 3, and 4, let wi(m) > 0 and let
the function

∫
T0

x0i(t, ·) dµ be invertible on R++, and the function x0(t, ·) be
differentiable on R++, for each t ∈ T0. If the set of monopoly allocations and
the set of Walras allocations are disjoint, x̃ is a monopoly allocation, and x∗

is a Walras allocation, then x̃ is not Pareto optimal, um(x̃(m)) > um(x∗(m)),
and ut(x̃(t)) < ut(x

∗(t)), for each t ∈ T0.

Proof. Assume that wi(m) > 0, that the function
∫
T0

x0i(t, ·) dµ is in-

vertible on R++, and the function x0(t, ·) is differentiable on R++, for each
t ∈ T0. Suppose that the set of monopoly allocations and the set of Wal-
ras allocations are disjoint. Let x̃ be a monopoly allocation and x∗ be a
Walras allocation. Hence, x̃ is not Pareto optimal as it is not a Walras
allocation, by Proposition 6, um(x̃(m)) > um(x∗(m)), by Corollary 1, and
ut(x̃(t)) < ut(x

∗(t)), for each t ∈ T0, by Corollary 3.
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6 The Shitovitz paradox: advantageous monopoly
in the core

Proposition 14 reconciles, in the abstract and terse framework of the Edge-
worth box, the Chicago and the New Brandeis Schools: when monopoly
power never leads to a price-taking behavior by the monopolist, the “curse
of bigness” undermines allocative efficiency – i.e., Pareto optimality – and
consumer welfare – i.e., the welfare of the atomless part of the economy.
Clearly, the institutional parsimoniousness of an Edgeworth box economy
does not permit one to capture the broader influence of “bigness” on polity
and society but it is rich enough to allow for an insight into its main economic
features, beyond the mere exercise of market power in terms of strategic
quantity-setting. Indeed, by adapting to our framework an argument pro-
posed by Shitovitz (1997), we shall exhibit a new kind of antitrust paradox:
when the monopolist, in exerting his power, does not behave as if he were a
price-taker, for any monopoly allocation there is an allocation in the core,
which is neither a monopoly allocation nor a Walras allocation, and which is
advantageous for the monopolist and non-advantageous for the atomless part
compared with that monopoly allocation. This version of Shitovitz’ paradox
highlights that the “curse of bigness” is not exhausted by the strategic ex-
ploitation of monopoly power but that it can manifest itself in other ways,
as predicted by the New Brandeis School.

In order to develop the Shitovitz argument in our bilateral exchange
framework, we need to introduce the following definition: we say that an
allocation y weakly dominates an allocation x via a coalition S if ut(y(t)) >
ut(x(t)), for each t ∈ S, and

∫
S y(t) dµ =

∫
S w(t) dµ. The weak core is the

set of all allocations which are not weakly dominated via any coalition.
Shitovitz (1997) considered a maximization problem, which can be adapted

to our monopoly model and which will be henceforth referred to as the Shi-
tovitz maximization problem. In our case, it can be stated as follows

max
x

um(x(m))

subject to

ut(x(t)) ≥ ut(w(t)), for each t ∈ T0,∫
T
x(t) dµ ≤

∫
T
w(t) dµ.

The following proposition was proved by Shitovitz (1997).
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Proposition 15. Under Assumptions 1, 2, and 3, there exists a solution x̌
to the Shitovitz maximization problem.

Proof. See the proof of Proposition 2.1 in Shitovitz (1997).

We prove now two corollaries to Proposition 15, which provide a char-
acterization of the solutions to the Shitovitz maximization problem.

Corollary 4. Under Assumptions 1, 2, and 3, if x̌ is a solution to the
Shitovitz maximization problem, then

∫
T x̌(t) dµ =

∫
T w(t) dµ.

Proof. Let x̌ be a solution to the Shitovitz maximization problem. Then, we
have that x̌(m)µ(m) ≤

∫
T w(t) dµ−

∫
T0

x̌(t) dµ. Suppose that x(m)µ(m) ̸=∫
T w(t) dµ −

∫
T0

x̌(t) dµ. Then, there is a vector x̄ such that x̌(m)µ(m) ≤
x̄µ(m) ≤

∫
T w(t) dµ −

∫
T0

x̌(t) dµ and x̌(m) ̸= x̄. Let x̄ be an assignment
such that x̄(m) = x̄ and x̄(t) = x̌(t), for each t ∈ T0. Then, x̄ satisfies
the constraints of the Shitovitz maximization problem and um(x̄(m)) >
um(x̌(m)) as um(·) is strongly monotone, by Assumption 2, a contradiction.
Hence, it must be that

∫
T x̌(t) dµ =

∫
T w(t) dµ.

Corollary 5. Under Assumptions 1, 2, and 3, if x̌ is a solution to the
Shitovitz maximization problem, then ut(x̌(t)) = ut(w(t)), for each t ∈ T0.

Proof. Let x̌ be a solution to the Shitovitz maximization problem. Sup-
pose that ut(x̌(t)) > ut(w(t)), for each t ∈ R, where R is a coalition such
that R ⊂ T0 and µ(R) > 0. We adapt to our framework the argument
used by Shitovitz (1973) to prove his Lemma 4. Let A denote the set of all
rational numbers in the interval (0, 1) and let Ra = {t ∈ R : ut(ax̌(t)) >
ut(w(t))}. Ra is a coalition as the function u(·, ·) is measurable, by As-
sumption 3. Moreover, for each t ∈ R, there is an a ∈ A such that
t ∈ Ra as ut(·) is continuous, by Assumption 2. Then, it must be that
R =

⋃
a∈ARa. But then, there exists an a0 ∈ A such that µ(Ra0) > 0

as µ is countably additive and µ(R) > 0. Let x̄ be an assignment such
that x̄(m) = x̌(m) + (1 − a0)

∫
Ra0

x̌(t) dµ, x̄(t) = a0x̌(t), for each t ∈ Ra0 ,

and x̄(t) = x̌(t), for each t ∈ T0 \ Ra0 . Then, it is straightforward to ver-
ify that x̄ satisfies the constraints of the Shitovitz maximization problem
and um(x̄(m)) > um(x̌(m)) as x̄(m) ≥ x̌(m), x̄(m) ̸= x̌(m), and um(·) is
strongly monotone, by Assumption 2, a contradiction. Hence, it must be
that ut(x̌(t)) = ut(w(t)), for each t ∈ T0.

We now adapt to our framework the proof of the main theorem in Shi-
tovitz (1997).
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Proposition 16. Under Assumptions 1, 2, and 3, if x̌ is a solution to the
Shitovitz maximization problem, then x̌ is in the core.

Proof. Let x̌ be a solution to the Shitovitz maximization problem. Then, x̌
is an allocation, by Corollary 4. We adapt to our framework the argument
used by Shitovitz (1997) to prove his Proposition 2.3. Suppose that there
is an allocation y which weakly dominates x̌ via a coalition S such that
{m} ⊂ S. Let ȳ be an assignment such that ȳ(t) = y(t), for each t ∈ S and
ȳ(t) = w(t), for each t ∈ T \ S. It is immediate to verify that ȳ satisfies
the constraints of the Shitovitz maximization problem. Moreover, it must
be that

um(ȳ)(m) = um(y)(m) > um(x̌)(m).

Then, x̌ is not a solution to the Shitovitz maximization problem, a contra-
diction. Suppose that there is an allocation y which weakly dominates x̌
via a coalition S such that S ⊆ T0. Assume, without loss of generality, that
w1(m) > 0. Then, we have that ut(x̌(t)) = ut((0,w

2(t))), for each t ∈ T0,
by Corollary 5. Suppose that y1(t) > 0 for a non-null set of traders t in S.
Then, it must be that

∫
S y1(t) dµ > 0 =

∫
S w1(t), a contradiction. But then,

we have that y2(t) > w2(t), as ut(·) is strongly monotone, for each t ∈ S, by
Assumption 2. This implies that

∫
S y2(t) dµ >

∫
S w2(t) dµ, a contradiction.

Therefore, it must be that x̌ is in the weak core. Hence, it is in the core, by
Lemma 4 in Shitovitz (1973).

The following propositions express our version of the Shitovitz paradox.

Proposition 17. Under Assumptions 1, 2, 3, and 4, let wi(m) > 0 and
the function

∫
T0

x0i(t, ·) dµ be invertible on R++ and the function x0(t, ·)
be differentiable on R++, for each t ∈ T0. A solution x̌ to the Shitovitz
maximization problem is a monopoly allocation if and only if it is a Walras
allocation.

Proof. Assume, without loss of generality, that w1(m) > 0 and that the
function

∫
T0

x01(t, ·) dµ is invertible on R++. Let x̌ be a solution to the
Shitovitz maximization problem. Then, x̌ is an allocation, by Corollary 4.
Suppose that x̌ is a monopoly allocation. Then, x̌ is in the core, by Proposi-
tion 16. Therefore, x̌ is a Walras allocation, by Proposition 9. Suppose that
x̌ is a Walras allocation. Then, there is a price p̌ such that the pair (p̌, x̌)
is a Walras equilibrium. But then, there exists a strategy ě ∈ E(m) such
that ě12 = w1(m)− x̌(m) and such that p̌ = p̊(ě), x̌(m) = x(m, ě, p̊(ě)), and
x̌(t) = x0(t, p̊(ě)), for each t ∈ T0, by the same argument used in the proof
of Proposition 11. Let e′ ∈ E(m) be a strategy such that e′ ̸= ě and let x′
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be an allocation such that x′(m) = x(m, e′, p̊(e′)) and x′(t) = x0(t, p̊(e′)),
for each t ∈ T0. It is straightforward to verify that the allocation x′ sat-
isfies the constraints of the Shitovitz maximization problem. Suppose that
u(x′(m)) > u(x̌(m)). Then, x̌ is not a solution to the Shitovitz maximiza-
tion problem, a contradiction. Therefore, x′ is a monopoly allocation as
ě ∈ E(m) is a monopoly equilibrium, with respect to the unique price se-
lection p̊(·). Hence, a solution x̌ to the Shitovitz maximization problem is a
monopoly allocation if and only if it is a Walras allocation.

Proposition 18. Under Assumptions 1, 2, 3, and 4, let wi(m) > 0 and let
the function

∫
T0

x0i(t, ·) dµ be invertible on R++, and the function x0(t, ·)
be differentiable on R++, for each t ∈ T0. If the set of monopoly allocations
and the set of Walras allocations are disjoint and x̃ is a monopoly allocation,
then there is an allocation x̌ in the core such that um(x̌(m)) > um(x̃(m))
and ut(x̌(t)) ≤ ut(x̃(t)), for each t ∈ T0.

Proof. Assume that wi(m) > 0, that the function
∫
T0

x0i(t, ·) dµ is in-

vertible on R++, and the function x0(t, ·) is differentiable on R++, for each
t ∈ T0. Suppose that the set of monopoly allocations and the set of Walras
allocations are disjoint. Let x̃ be a monopoly allocation. Then, there exists
a strategy ẽ ∈ E(m) which is a monopoly equilibrium, with respect to the
unique price selection p̊(·). Let p̃ = p̊(ẽ). x̃ is not in the core as it is not
a Walras allocation, by Proposition 9. Let x̌ be a solution to the Shitovitz
maximization problem. x̌ is neither a monopoly allocation nor a Walras
allocation, by Proposition 17. We have that um(x̌(m)) ≥ um(x̃(m)), as
x̃(m) satisfies the constraints of the Shitovitz maximization problem. Sup-
pose that um(x̌(m)) = um(x̃(m)). Then, we have that x̃ is in the core,
by the same argument used in the proof of Proposition 16, a contradiction.
But then, it must be that um(x̌(m)) > um(x̃(m)). Moreover, we have that
ut(x̌(t)) ≤ ut(x̃(t)) as ut(x̃(t)) ≥ ut(y), for all y ∈ {x ∈ R2

+ : p̃x = p̃w(t)},
and ut(x̌(t)) = ut(w(t)), for each t ∈ T0, by Corollary 5.

Example 2 in Section 5 exhibits a case where the set of monopoly al-
locations and the set of Walras allocations are disjoint and monopoly is
advantageous. The next example shows that, for the same exchange econ-
omy, the Shitovitz paradox holds: there is an allocation in the core which is
advantageous for the monopolist with respect to the monopoly allocation.

Example 2′. Consider the exchange economy specified in Example 2. Then,
the set of monopoly allocations and the set of Walras allocations are dis-
joint, there is a unique solution to the Shitovitz maximization problem x̌ in
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the core such that um(x̌(m)) > um(x̃(m)) and ut(x̌(t)) ≤ ut(x̃(t)), for each
t ∈ T0, where x̃ is the unique monopoly allocation.

Proof. The set of monopoly allocations and the set of Walras allocations
are disjoint as the allocation x̃ such that x̃(m) = (34 ,

1
4) and x̃(t) = (14 ,

3
4),

for each t ∈ T0, is the unique monopoly allocation and the allocation x∗ such
that (x∗1(m),x∗2(m)) = (1 − (14)

1
3 , (14)

2
3 ), and (x∗1(t),x∗2(t)) = ((14)

1
3 , 1 −

(14)
2
3 ), for each t ∈ T0, is the unique Walras allocation, by Example 2.

The core consists of all the allocations x of the form (x1(m),x2(m)) =
(x1(m), 1

4(1−x1(m))
) and (x1(t),x2(t)) = (1−x1(m), 1− 1

4(1−x1(m))
), for each

t ∈ T0, where 1 − (14)
1
3 ≤ x1(m) ≤ 1 − (14)

2
3 , as for such allocations there

exists a price p such that the pair (p,x) is an efficiency equilibrium and
px(t) ≤ pw(t), for each t ∈ T0, by Theorem A∗ in Shitovitz (1973). The

allocation x̌ such that x̌(m) = (1− (14)
2
3 , (14)

1
3 ) and x̌(t) = ((14)

2
3 , 1− (14)

1
3 ),

for each t ∈ T0, is the unique solution to the Shitovitz maximization problem
and it is in the core. Moreover, we have that

um(x̌(m)) = um(1−(
1

4
)
2
3 , (

1

4
)
1
3 ) =

1

2
+
3

8
(
1

4
)−

1
3 >

7

8
= um

(
3

4
,
1

4

)
= um(x̃(m)),

and

ut(x̌(t)) = ut((
1

4
)
2
3 , 1− (

1

4
)
1
3 ) = 1 <

5

4
= ut

(
1

4
,
3

4

)
= ut(x̃(t)),

for each t ∈ T0.

7 Conclusion

In this paper, we have used the model of monopoly introduced by Busetto
et al. (2023) to recast the relation between the economic welfare standard
for antitrust and the explicit monopoly and perfectly competitive solutions
in an Edgeworth box economy in which one commodity is held only by the
monopolist – represented as an atom – and the other is held only by small
traders – represented by an atomless part. In this framework, we have recon-
ciled the approach characterizing the so-called Chicago School based on the
notions of allocative efficiency and consumer welfare with the antimonopoly
credo about “the curse of bigness” of the so-called New Brandeis School.
Moreover, we have reformulated a paradox, due to Shitovitz (1997), which
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shows that the Brandeisian “curse of bigness” transcends the monopolists
exercise of market power.

Busetto et al. (2023) also proposed a bilateral exchange version of the pi-
oneering model of partial monopoly proposed by Forchheimer (1908), where
a monopolist shares a market with a competitive fringe. We leave for fur-
ther research an analysis of the antitrust implications of this model and a
comparison with the results obtained in this paper.

Busetto et al. (2020) considered a bilateral oligopoly version of the
Shapley window model with large traders, represented as atoms, and small
traders, represented by an atomless part. It seems worthy of future research
also an analysis of antitrust in this oligopolistic Edgeworth box economy
and a comparison with the results obtained in this paper.
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