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Abstract

In this paper, we present a refreshed version of the original model
proposed by Gabszewicz and Vial (1972) and we use their main ex-
ample to review the main theoretical issues related to the notion of
Cournot-Walras equilibrium. We compute, in the Gabszewicz and Vial
main example, two different Cournot-Walras equilibria associated with
different normalization rules. Moreover, in the same example, we com-
pute a Utility-Cournot-Walras equilibrium as defined by Grodal (1996)
and we show that it coincides with the unique Walras equilibrium. Fur-
thermore, using a proposition proved by Grodal (1996), we build a nor-
malization rule with respect to which there is a Cournot-Walras equilib-
rium that coincides with the Utility-Cournot-Walras equilibrium and
hence with the unique Walras equilibrium. To the best of our knowl-
edge, this example provides the first case of Cournotian duopolistic
firms being Walrasian in a production economy.
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1 Introduction

Almost fifty years ago, Gabszewicz and Vial (1972) proposed a pathbreak-
ing analysis of oligopolistic interaction à la Cournot among firms in a gen-
eral equilibrium framework, where they introduced the concept of Cournot-
Walras equilibrium. In this celebrated contribution, they lucidly recognized
the main theoretical issues raised by their own concept: The dependence of
the Cournot-Walras equilibrium on the rule chosen to normalize prices and
the possible lack of rationality of the maximization of monetary profits as a
decision criterion for the firms. These issues, together with some other more
technical problems concerning the very existence of a Cournot-Walras equi-
librium, were discussed in a conspicuous literature inspired by their seminal
article, which is summarized in several surveys (see Mas-Colell (1982), Hart
(1985), Bonanno (1990), among others).

In this paper, we present a refreshed version of the original model pro-
posed by Gabszewicz and Vial (1972) and provide a systematic treatment
of the two fundamental issues mentioned above, concerning price normaliza-
tion and firms’ rationality criteria. On the basis of our analysis, we are able
to show a strong result: Cournotian duopolistic firms may be Walrasian.

In our analysis, we largely borrow from Grodal (1996): First of all, we use
her notion of a normalized price function - i.e., a function that results from
the composition of a normalization rule and a price selection - to re-define
the very concept of Cournot-Walras equilibrium.

Gabszewicz and Vial (1972) did not explicitly specify a normalization
rule in their general model. Nevertheless, in their main example (see p.
385) they introduced a specific rule, which normalizes the prices of an ex-
change economy using the feasible production plans determining its interme-
diate initial endowments. They used this normalization rule to compute a
Cournot-Walras equilibrium for a two consumers, two firms, and two goods
specification of their model.

They employed the same rule also in a second example (see p. 398) to
show that a Cournot-Walras equilibrium computed according to it does not
coincide with another Cournot-Walras equilibrium computed according to a
more standard normalization rule based on one good used as the numeraire.
This second example has the drawback of considering a production economy
with two firms, two goods but only one consumer, thereby disposing of the
Walrasian flavor of the Gabszewicz and Vial model.

Here, in our definition of a Cournot-Walras equilibrium, we base the
construction of the notion of a normalized price function on the definition of
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a type of normaliziation rules which takes inspiration from the one used by
Gabszewicz e Vial in their examples and encompasses it. At the same time,
this type of normalization rules generalizes a different type of normalization
rules, formally introduced by Grodal (1996), which depend only on prices,
allowing them to depend also on the quantities produced by firms. We call
à la Gabszewicz and Vial those normalization rules that satisfy the require-
ments of our generalization, while we call à la Grodal those normalization
rules which belong to the type introduced by this author. In Section 2, we
formally establish the general relationship between the two types of rules.

After re-considering the notion of a Cournot-Walras equilibrium and
proposing a slightly amended version of Gabszewicz and Vial’s main ex-
ample, we compute, in the same basic structure, a Cournot-Walras equi-
librium, using a normalization rule à la Grodal, that maps prices from the
unit simplex into itself. Since this equilibrium differs from that computed
by Gabszewicz and Vial on the basis of their normalization rule, the result
represents a first explicit proof of the dependence of the original Gabszewicz
and Vial’s Cournot-Walras equilibrium on the normalization rule, which
avoids the shortcomings exhibited by the second example provided by those
authors.

Gabszewicz and Vial (1972) also reported an argument proposed in ver-
bal terms by a referee of their original paper concerning firms’ rationality
criteria (see p. 395). We develop here that argument, providing a result
that, to the best of our knowledge, can be considered as a first formal coun-
terexample to the idea, present in the literature, that profit maximization is
an arbitrary rationality criterion for firms’ owners in a general equilibrium
model with oligopolistic interaction à la Cournot (see, among others, Grodal
(1996)).

Finally, still in the structure of Gabszewicz and Vial’s main example,
we compute a Utility-Cournot-Walras equilibrium - a notion introduced by
Grodal (1996) - and we show that it coincides with the unique Walras equi-
librium of the economy. Moreover, using a proposition mutuated once again
by Grodal (1996), we build a normalization rule à la Grodal with respect to
which there is a Cournot-Walras equilibrium that coincides with the Utility-
Cournot-Walras equilibrium and hence with the unique Walras equilibrium.

Codognato et al. (2015) and Busetto et al. (2020) exhibited some cases
in which atomic Cournotian traders may be Walrasian in pure exchange
economies but, as far as we know, our equivalence result, obtained in the
basic setup of the Gabszewicz and Vial example, provides the first case of
Cournotian duopolistic firms being Walrasian in a production economy.
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We review the critical issues raised by Gabszewicz and Vial’s seminal
analysis in Section 4 within the same structure of a production economy
studied by these authors in their main example. Being aware of those theo-
retical problems, Gabszewicz and Vial (1972) themselves anticipated: “[...]
Some readers could accordingly be tempted to reject our theory as a whole;
but they should be aware that they would simultaneously reject the whole
theory of imperfect competition in partial analysis” (see p. 400).

Nevertheless, partial equilibrium analysis à la Cournot is not embodied
into a monolithic theory, but it consists of a variety of models designed to
capture relevant features of the markets under consideration. Consequently,
it seems to us that the main lesson we can draw from our review of the
fundamental theoretical questions raised by the general equilibrium analysis
à la Cournot introduced by Gabszewicz and Vial (1972) is represented by
the fact that they showed its limits as a monolithic theory. These limits have
been emphasized during a fifty-year long debate which led to a theoretical
impasse, preventing the development of a variety of models with production
aimed at grasping different configurations of market interrelations which
could be considered as a general equilibrium counterpart of the variety of
Cournotian models in a partial equilibrium analysis. Rather, the Cournot-
Walras approach has shown its major results in the context of pure-exchange
economies, where the critical problems listed above are radically removed
(see, for instance, Codognato and Gabszewicz (1991)).

In the last section of this work, we shall have a look at some promising
very recent developments of the theory of oligopoly à la Cournot in a general
equilibrium analysis, which could overcome the impasse of this theory for
production economies.

The paper is organized as follows. In Section 2, we introduce the math-
ematical model and we define the notion of Cournot-Walras equilibrium
inroducing the notion of normalized price function. In Section 3, we com-
pute two different Cournot-Walras equilibria in the structure of Gabszewicz
and Vial’s main example. In Section 4, we discuss, through further results,
the main issues related to the notion of Cournot-Walras equilibrium for
economies with production. In Section 5, we draw some conclusions and we
suggest some further lines of research.
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2 Mathematical model

We present here a refreshed version of the mathematical model proposed
by Gabszewicz and Vial (1972), where we explicitly specify the notion of a
normalization rule, generalizing that proposed by Grodal (1996), to define
the concept of Cournot-Walras equilibrium.

We consider a production economy with n consumers i, i = 1, . . . , n, m
firms j, j = 1, . . . ,m, and l consumption goods, h = 1, . . . , l.

Each consumer i = 1, . . . , n is characterized by a consumption set Rl
+, an

initial endowment vector ωi ∈ Rl
+, with ωi ≫ 0, a share θij in the production

of firm j, such that
∑n

i=1 θij = 1, for each firm j = 1, . . .m, and a rational,
continuous, strongly monotone, and strictly convex preference relation ≿i,
defined on Rl

+. A consumption bundle of consumer i is a vector xi ∈ Rl
+.

Each firm j = 1, . . . ,m is characterized by a compact and convex pro-
duction set Gj ⊂ Rl

+. A feasible production plan of firm j is a vector
yj ∈ Gj .

A price vector is a vector p ∈ ∆, where ∆ is the unit simplex.
An allocation is a n-tuple of consumption bundles (x1, . . . , xn) and a m-

tuple of feasible production plans (y1, . . . , ym) such that
∑n

i=1 xi =
∑n

i=1 ωi+∑m
j=1 yj .
Given feasible production plans (y1, . . . , ym), the intermediate endow-

ment of consumer i is ωi +
∑m

j=1 θijyj .
Given feasible production plans (y1, . . . , ym), an equilibrium allocation

relative to (y1, . . . , ym) is a n-tuple of consumption bundles (x1, . . . , xn) such
that

∑n
i=1 xi =

∑n
i=1(ωi +

∑m
j=1 θijyj).

A n-tuple of consumption bundles (x1, . . . , xn) and a m-tuple of feasi-
ble production plans (y1, . . . , ym) such that (x1, . . . , xn) is an equilibrium
allocation relative to (y1, . . . , ym) is an allocation as

∑n
i=1 xi =

∑n
i=1(ωi +∑m

j=1 θijyj) =
∑n

i=1 ωi +
∑m

j=1

∑n
i=1 θijyj =

∑n
i=1 ωi +

∑m
j=1 yj .

Given feasible production plans (y1, . . . , ym), a Walras equilibrium rel-
ative to (y1, . . . , ym) is a pair (p, (x1, . . . , xn)) consisting of a price vector
p ∈ ∆ and an equilibrium allocation (x1, . . . , xn) relative to (y1, . . . , ym)
such that xi ≿i x

′
i, for each x′i such that px′i ≤ pωi + p

∑m
j=1 θijyj , for each

consumer i = 1, . . . , n.
Given feasible production plans (y1, . . . , ym), there exists a Walras equi-

librium (p, (x1, . . . , xn)) relative to (y1, . . . , ym) as ≿i is rational, continuous,
strongly monotone, and strictly convex, for each consumer i = 1, . . . , n.

A price correspondence is a correspondence π defined on
∏m

j=1Gj with
values in ∆ such that, for all feasible production plans (y1, . . . , ym), (p, (x1, . . .
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xn)) is a Walras equilibrium relative to (y1, . . . , ym), for some p ∈ π(y1, . . . , ym)
and for some equilibrium allocation (x1, . . . , xn).

A price selection is a function p defined on
∏m

j=1Gj with values in ∆
such that p(y1, . . . , ym) ∈ π(y1, . . . , ym), for all feasible production plans
(y1, . . . , ym).

A normalization rule à la Gabszewicz and Vial is a function α de-
fined on

∏m
j=1Gj ×∆ with values in Rl

+ \ {0} such that α(y1, . . . , ym, p) =∑l
h=1 αh(y1, . . . , ym, p)p, for all feasible production plans (y1, . . . , ym) and

for each p ∈ ∆.
A normalization rule à la Gabszewicz and Vial is a normalization rule

à la Grodal if and only if α(y1, . . . , ym, p) = α(y′1, . . . , y
′
m, p), for all feasible

production plans (y1, . . . , ym) and (y′1, . . . , y
′
m) and for each p ∈ ∆ (see

Grodal (1996)).
Given a price selection p and a normalization rule à la Gabszewicz and

Vial α, a normalized price function is a function pα defined on
∏m

j=1Gj with

values in Rl
+ \ {0} such that pα(y1, . . . , ym) = α(y1, . . . , ym, p(y1, . . . , ym)),

for all feasible production plans (y1, . . . , ym).
Given a normalized price function pα, the profit function of firm j is the

function pα(y1, . . . , ym)yj , for all feasible production plans (y1, . . . , ym).
Given a normalized price function pα, a m-tuple of feasible production

plans (y∗1, . . . , y
∗
m) is a Cournot equilibrium for pα if

pα(y∗1, . . . , y
∗
j . . . , y

∗
m)y∗j ≥ pα(y∗1, . . . , yj . . . , y

∗
m)yj ,

for each yj ∈ Gj and for each firm j = 1, . . . ,m.
A Cournot-Walras equilibrium is a triplet (pα, (x∗1, . . . , x

∗
n), (y

∗
1, . . . , y

∗
m))

consisting of a normalized price function pα, a m-tuple of feasible production
plans (y∗1, . . . , y

∗
m), and an equilibrium allocation (x∗1, . . . , x

∗
n) relative to

(y∗1 . . . , y
∗
m) such that the pair (pα(y∗1, . . . , y

∗
m)), (x∗1, . . . , x

∗
n)) is a Walras

equilibrium relative to (y∗1, . . . , y
∗
m) and (y∗1, . . . , y

∗
m) is a Cournot equilibrium

for pα.
A Walras equilibrium of the production economy is a triplet (p̂, (x̂1, . . . ,

x̂n), (ŷ1, . . . , ŷm)) consisting of a price vector p̂ ∈ ∆, a m-tuple of feasible
production plans (ŷ1, . . . , ŷm), and an equilibrium allocation (x̂1, . . . , x̂n)
relative to (ŷ1, . . . , ŷm) such that the pair (p̂, (x̂1, . . . , x̂n)) is a Walras equi-
librium relative to (ŷ1, . . . , ŷm) and p̂yj achieves its maximum on Gj in ŷj ,
for each firm j = 1, . . . ,m.
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3 Cournot-Walras equilibrium and normalization
rules

In order to illustrate the fundamental concepts introduced in their paper,
Gabszewicz and Vial (1972) considered a first example - the main one of
their paper - which constitutes a particularization of the model of a pro-
duction economy introduced in the previous section. In this example, they
used a specific normalization rule belonging to the type we have called à la
Gabszewicz and Vial.

Here, we present a more articulated example, in which we first re-propose
a slightly amended version of their result. Then, within the same structure
of a production economy introduced by those authors, we compute a dif-
ferent Cournot-Walras equilibrium, using a type of normalization rule à la
Grodal. This result provides a first explicit proof of the dependence of the
original Gabszewicz and Vial’s Cournot-Walras equilibrium on the normal-
ization rule. As anticipated in the Introduction, Gabszewicz and Vial’s orig-
inal paper contains a second example in which a different Cournot-Walras
equilibrium is associated to a different normalization rule. Neverthless, it
considers a simple production economy with a unique consumer, which can-
not be adequately compared with the general equilibrium setup used in their
main example. The Example below aims at overcoming these limitations.

Example. Consider a production economy, where i = 2, j = 2, l = 2,
ω1 = (0, 0), ω2 = (0, 0), θ11 = 1, θ12 = 0, θ21 = 0, θ22 = 1, ≿1 is rep-

resented by the utility function u1(x11, x21) = x
1
4
11x

3
4
21, ≿2 is represented

by the utility function u2(x12, x22) = x
3
4
12x

1
4
22, G1 = {y1 = (y11, y21) :

0 ≤ y11 ≤ 2, 0 ≤ y21 ≤ 8, 2y11 + y21 ≤ 10}, G2 = {y2 = (y12, y22) :
0 ≤ y12 ≤ 8, 0 ≤ y22 ≤ 2, y12 + 2y22 ≤ 10}. Moreover, consider the
functions β(y1, y2, p) = p and γ(y1, y2, p) = 3y11+y12+y21+3y22

D p, where D =
(y21 + 3y22)(y11 + y12) + (3y11 + y12)(y21 + y22), for all feasible production
plans (y1, y2) and for each p ∈ ∆. Then, the triplet (p̂, (x̂1, x̂2), (ŷ1, ŷ2)),
where p̂ = (12 ,

1
2), (x̂1, x̂2) = ((94 ,

27
4 ), (

27
4 ,

9
4)), (ŷ1, ŷ2) = ((1, 8), (8, 1)),

is the unique Walras equilibrium of the production economy; the func-
tion p, where p(y1, y2) = ( y21+3y22

3y11+y12+y21+3y22
, 3y11+y12
3y11+y12+y21+3y22

), for all fea-
sible production plans (y1, y2), is the unique price selection; β is a nor-
malization rule à la Grodal and the triplet (pβ, (x∗1, x

∗
2), (y

∗
1, y

∗
2)), where

pβ(y1, y2) = ( y21+3y22
3y11+y12+y21+3y22

, 3y11+y12
3y11+y12+y21+3y22

), for all feasible production

plans (y1, y2), (x
∗
1, x

∗
2) = ((3517 ,

105
17 ), (

105
17 ,

35
17)), (y

∗
1, y

∗
2) = ((3017 ,

110
17 ), (

110
17 ,

30
17)),
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is a Cournot-Walras equilibrium; γ is a normalization rule à la Gabszewicz
and Vial and the triplet (pγ , (x∗∗1 , x∗∗2 ), (y∗∗1 , y∗∗2 )), where pγ(y1, y2) = (y21+3y22

D ,
3y11+y12

D ), for all feasible production plans (y1, y2), (x
∗∗
1 , x∗∗2 ) = ((2, 6), (6, 2)),

(y∗∗1 , y∗∗2 ) = ((2, 6), (6, 2)), is a Cournot-Walras equilibrium.

Proof. Given feasible production plans (y1, y2), the demand function of
consumer 1 is

x1(p, py1) =

(
p1y11 + p2y21

4p1
,
3(p1y11 + p2y21)

4p2

)
and the demand function of consumer 2 is

x2(p, py2) =

(
3(p1y12 + p2y22)

4p1
,
p1y12 + p2y22

4p2

)
.

The triplet (p̂, (x̂1, x̂2), (ŷ1, ŷ2)), where p̂ = (12 ,
1
2), (x̂1, x̂2) = ((94 ,

27
4 ),

(274 ,
9
4)), (ŷ1, ŷ2) = ((1, 8), (8, 1)), is a Walras equilibrium of the production

economy as

x̂11 + x̂12 = x11(p̂, p̂ŷ1) + x12(p̂, p̂ŷ2) =
9

4
+

27

4
= 1 + 8 = ŷ11 + ŷ12,

x̂21 + x̂22 = x21(p̂, p̂ŷ1) + x22(p̂, p̂ŷ2) =
27

4
+

9

4
= 8 + 1 = ŷ21 + ŷ22,

p̂ŷ1 = 1
2y11 +

1
2y21 achieves its maximum on G1 in ŷ1 = (1, 8), and p̂ŷ2 =

1
2y12 +

1
2y22 achieves its maximum on G2 in ŷ2 = (8, 1). We now show that

the triplet (p̂, (x̂1, x̂2), (ŷ1, ŷ2)) is the unique Walras equilibrium of the pro-
duction economy. Suppose that there exists a triplet (p̃, (x̃1, x̃2), (ỹ1, ỹ2)) ̸=
(p̂, (x̂1, x̂2), (ŷ1, ŷ2)) which is a Walras equilibrium of the production econ-
omy. Suppose that p̃1

p̃2
≥ 2. Then, it is straightforward to verify that

ỹ1 = (t2+(1− t), t6+(1− t)8), for some t ∈ [0, 1] and ỹ2 = (8, 1). But then,
we have that

x̃11 + x̃12 < ỹ11 + ỹ12,

a contradiction. Suppose that p̃1
p̃2

≤ 1
2 . Then, it is straightforward to verify

that ỹ1 = (1, 8) and ỹ2 = (t6+ (1− t)8, t2+ (1− t)), for some t ∈ [0, 1]. But
then, we have that

x̃11 + x̃12 > ỹ11 + ỹ12,

a contradiction. Therefore, we must have that 1
2 < p̃1

p̃2
< 2. Then, it is

immediate to check that ỹ1 = (1, 8) and ỹ2 = (8, 1) and that p̃ = (12 ,
1
2) is

the only solution to the equation

x11(p̃, p̃ỹ1) + x12(p̃, p̃ỹ2) = 9 = x21(p̃, p̃ỹ1) + x22(p̃, p̃ỹ2).
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But then, we have that (p̃, (x̃1, x̃2), (ỹ1, ỹ2)) = (p̂, (x̂1, x̂2), (ŷ1, ŷ2)), a con-
tradiction. Therefore, the triplet (p̂, (x̂1, x̂2), (ŷ1, ŷ2)) is the unique Walras
equilibrium of the production economy. The function p, where p(y1, y2) =
( y21+3y22
3y11+y12+y21+3y22

, 3y11+y12
3y11+y12+y21+3y22

), is the unique price selection as p(y1, y2)
is the unique solution to the system of equations

x11(p, py1) + x12(p, py2) = y11 + y12

and
p1 + p2 = 1,

for all feasible production plans (y1, y2). Consider the function β(y1, y2, p) =
p. β is a normalization rule à la Gabszewicz and Vial as β(y1, y2, p) =∑2

h=1 βh(y1, y2, p)p, for all feasible production plans (y1, y2) and for each
p ∈ ∆. Moreover, it is a normalization rule à la Grodal as β(y1, y2, p) =
β(y′1, y

′
2, p), for all feasible production plans (y1, y2) and (y′1, y

′
2) and for

each p ∈ ∆. Consider the triplet (pβ, (x∗1, x
∗
2), (y

∗
1, y

∗
2)), where pβ(y1, y2) =

( y21+3y22
3y11+y12+y21+3y22

, 3y11+y12
3y11+y12+y21+3y22

), for all feasible production plans (y1, y2),

(x∗1, x
∗
2) = ((3517 ,

105
17 ), (

105
17 ,

35
17)), (y

∗
1, y

∗
2) = ((3017 ,

110
17 ), (

110
17 ,

30
17)). pβ is a nor-

malized price function as

pβ(y1, y2) = β(y1, y2, p(y1, y2)) = p(y1, y2),

for all feasible production plans (y1, y2). Let pβ∗ = (pβ(y∗1, y
∗
2)) = (12 ,

1
2).

The pair (pβ∗, (x∗1, x
∗
2)) is a Walras equilibrium relative to (y∗1, y

∗
2) as

x∗11+x∗12 = x11(p
β∗, pβ∗y∗1)+x12(p

β∗, pβ∗y∗2) =
35

17
+
105

17
=

30

17
+
110

17
= y∗11+y∗12

and

x∗21+x∗22 = x21(p
β∗, pβ∗y∗1)+x22(p

β∗, pβ∗y∗2) =
105

17
+
35

17
=

110

17
+
30

17
= y∗21+y∗22.

The profit function of firm 1, given the feasible production plan of firm 2,
y∗2, is

pβ(y1, y
∗
2)y1 =

68y11y21 + 90y11 + 110y21
51y11 + 17y21 + 200

.

Let fβ
1 denote the extension of this profit function to R2

+. fβ
1 is strictly

increasing in y11 and y21 as it is straightforward to verify that
∂fβ

1 (y1,y∗2)
∂y11

> 0
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and
∂fβ

1 (y1,y∗2)
∂y21

> 0, for each y1 ∈ R2
+. Moreover, it is also possible to verify,

through some more cumbersome computations, that

−

(
∂fβ

1 (y1, y̌2)

∂y11

)2
∂2v̄1(y1, y̌2)

∂y221
−

(
∂fβ

1 (y1, y̌2)

∂y21

)2
∂2fβ

1 (y1, y̌2)

∂y211

+2
∂fβ

1 (y1, y̌2)

∂y11

∂fβ
1 (y1, y̌2)

∂y21

∂2fβ
1 (y1, y̌2)

∂y11∂y12
> 0,

for each y1 ∈ R2
+. Then, the function fβ

1 is strictly quasi-concave on G1. At
(y∗11, y

∗
21) = (3017 ,

110
17 ), λ

∗
1 = λ∗

2 = 0, and λ∗
3 =

2
5 , the Kuhn-Tucker conditions

for the maximization of the function fβ
1 on G1, which reduce to

y11(
∂fβ

1 (y1, y
∗
2)

∂y11
− λ1 − 2λ3) = 0,

y21(
∂fβ

1 (y1, y
∗
2)

∂y21
− λ2 − λ3) = 0,

λ1(y11 − 2) = 0,

λ2(y21 − 8) = 0,

λ3(2y11 + y21 − 10) = 0,

are satisfied as
∂fβ

1 (y∗1 ,y
∗
2)

∂y11
= 4

5 and
∂f1(βy∗1 ,y

∗
2)

∂y21
= 2

5 . Then, (y∗11, y
∗
21) is the

unique feasible production plan which maximizes fβ
1 on G1 as f1 is strictly

quasi-concave. The profit function of firm 2, given the feasible production
plan of firm 1, y∗1, is

pβ(y∗1, y2)y1 =
68y12y22 + 90y22 + 110y12

51y22 + 17y12 + 200
.

Let fβ
2 denote the extension of this profit function to R2

+. Then, by using,
mutatis mutandis, the previous argument, it is straightforward to verify that
(y∗12, y

∗
22) is the unique feasible production plan which maximizes fβ

2 on G2.
Therefore, the triplet (pβ, (x∗1, x

∗
2), (y

∗
1, y

∗
2)) is a Cournot-Walras equilibrium.

Consider the function γ(y1, y2, p) =
y21+3y22+3y11+y12

D p. γ is a normalization

rule à laGabszewicz and Vial as γ(y1, y2, p) = (
∑2

h=1
y21+3y22+3y11+y12

D ph)p =∑2
h=1 γh(y1, y2, p)p, for all feasible production plans (y1, y2) and for each

p ∈ ∆. Consider the triplet (pγ , (x∗∗1 , x∗∗2 ), (y∗∗1 , y∗∗2 )), where pγ(y1, y2) =

10



(y21+3y22
D , 3y11+y12

D ), for all feasible production plans (y1, y2), (x∗∗1 , x∗∗2 ) =
((2, 6), (6, 2)), (y∗∗1 , y∗∗2 ) = ((2, 6), (6, 2)). pγ is a normalized price function
as

pγ(y1, y2) = γ(y1, y2, p(y1, y2)) =
3y11 + y12 + y21 + 3y22

D
p(y1, y2),

for all feasible production plans (y1, y2). Let p
γ∗∗ = (pγ(y∗∗1 , y∗∗2 )) = ( 1

16 ,
1
16).

The pair (pγ∗∗, (x∗∗1 , x∗∗2 )) is a Walras equilibrium relative to (y∗∗1 , y∗∗2 ) as

x∗∗11 + x∗∗12 = x11(p
γ∗∗, pγ∗∗y∗∗1 ) + x12(p

γ∗∗, pγ∗∗y∗∗2 ) = 2 + 6 = y∗∗11 + y∗∗12

and

x∗∗21 + x∗∗22 = x21(p
β∗∗, pβ∗∗y∗∗1 ) + x22(p

β∗∗, pβ∗∗y∗∗2 ) = 6 + 2 = y∗∗21 + y∗∗22.

The profit function of firm 1, given the feasible production plan of firm 2,
y∗∗2 , is

pγ(y1, y
∗∗
2 )y1 =

2y11y21 + 3y11 + 3y21
2y11y21 + 6y11 + 6y21 + 24

.

Let fγ
1 denote the extension of this profit function to R2

+. fγ
1 is strictly

increasing in y11 and y21 as it is straightforward to verify that
∂fγ

1 (y1,y
∗∗
2 )

∂y11
> 0

and
∂fγ

1 (y1,y
∗∗
2 )

∂y21
> 0, for each y1 ∈ R2

+. Moreover, it is also possible to verify,
through some more cumbersome computations, that

−
(
∂fγ

1 (y1, y̌2)

∂y11

)2
∂2fγ

1 (y1, y̌2)

∂y221
−
(
∂fγ

1 (y1, y̌2)

∂y21

)2
∂2fγ

1 (y1, y̌2)

∂y211

+2
∂fγ

1 (y1, y̌2)

∂y11

∂fγ
1 (y1, y̌2)

∂y21

∂2fγ
1 (y1, y̌2)

∂y11∂y12
> 0,

for each y1 ∈ R2
+. Then, the function fγ

1 is strictly quasi-concave on G1. At
(y∗∗11, y

∗∗
21) = (2, 6), λ∗∗

1 = λ∗∗
3 = 1

48 , and λ∗∗
3 = 0, the Kuhn-Tucker conditions

for the maximization of the function fγ
1 on G1, which reduce to

y11(
∂fγ

1 (y1, y
∗∗
2 )

∂y11
− λ1 − 2λ3) = 0,

y21((
∂fγ

1 (y1, y
∗∗
2 )

∂y21
− λ2 − λ3) = 0,

λ1(y11 − 2) = 0,

11



λ2(y21 − 8) = 0,

λ3(2y11 + y21 − 10) = 0,

are satisfied as
∂fγ

1 (y
∗∗
1 ,y∗∗2 )

∂y11
= 3

48 and
∂fγ

1 (y
∗∗
1 ,y∗∗2 )

∂y21
= 1

48 . Then, (y
∗∗
11, y

∗∗
21) is the

unique feasible production plan which maximizes fγ
1 on G1 as fγ

1 is strictly
quasi-concave. The profit function of firm 2, given the feasible production
plan of firm 1, y∗∗1 , is

pβ(y∗∗1 , y2)y1 =
2y12y22 + 3y12 + 3y22

2y12y21 + 6y12 + 6y22 + 24

Let fγ
2 denote the extension of this profit function to R2

+. Then, by using,
mutatis mutandis, the previous argument, it is straightforward to verify
that (y∗∗12, y

∗∗
22) is the unique feasible production plan which maximizes fγ

2

on G2. Therefore, the triplet (pγ , (x∗∗1 , x∗∗2 ), (y∗∗1 , y∗∗2 )) is a Cournot-Walras
equilibrium.

4 Discussion of the model and the Example

In Section 3, we have reconsidered the main example proposed by Gab-
szewicz and Vial (1972), providing more details, amending some minor mis-
calculations, and adding the computation of a new Cournot-Walras equi-
librium under a different normalization rule, à la Grodal. We use now the
results obtained in the previous section to discuss some crucial points of the
theoretical tradition related to the Cournot-Walras equilibrium concept.

A first - minor - technical point concerns the fact that, in the Example,
consumers’ preferences are represented by Cobb-Douglas utility functions,
which are not strongly monotone on the boundary of the consumption set.
This minor difficulty can be overcome by assuming that the consumption
set is restricted to R2

++.
A second technical point concerns the fact that, in the Example, con-

sumers’ endowments are equal to zero. The general model proposed by Gab-
szewicz and Vial (1972), re-produced in Section 1, requires that each con-
sumer has a strictly positive endowment of each consumption good. Since
this model does not consider inputs or intermediary goods - as explicitly
recognized by Gabszewicz and Vial (1972) themselves - this assumption
guarantees that there exists an exchange economy, i.e., an economy where
there is something to be exchanged, relative to all feasible production plans,
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and, together with the assumptions on consumers’ preferences, that the
set of its Walras equilibria in nonempty. Actually, the weaker condition
ωi ≥ 0, for each consumer i = 1, . . . , n, and

∑n
i=1 ωi ≫ 0 could be sufficient

for the existence of a Walras equilibrium relative to all feasible production
plans. However, in the extensions of this model which include inputs this
condition is no longer sufficient as the demand for inputs may lead to non-
positive intermediate endowments for some consumers. This issue is dealt
with by Mas-Colell (1982), Hart (1985), and Bonanno (1990), among others,
in their survey articles and is only referred to the problem of nonexistence
of a Walras equilibrium of the exchange economies corresponding to these
“pathological” intermediate endowments. Nevertheless, a more fundamen-
tal problem arises when intermediate endowments are strictly negative for
some consumer or null for all consumers: The very existence of an exchange
economy. Therefore, in the structure of the Example, an exchange econ-
omy relative to null production plans does not exist as there is nothing to
be exchanged. Gabszewicz and Vial (1972) themselves were aware of this
difficulty which they proposed to overcome “[...] by restricting the strategy
set on each firm to the intersection of their respective production set with
the strictly positive orthant” (see Footnote 5, p. 386). This restriction can
actually be weakened by imposing that the sum of the strategy sets of the
two firms is contained in the strictly positive orthant.

The Example in Section 3 compares two different Cournot-Walras equi-
libria, obtained on the basis of two different types of normalization rules.
The first one re-proposes the specific rule introduced by Gabszewicz and Vial
(1972) in their main example, which normalizes the prices of an exchange
economy using the feasible production plans determining its intermediate
initial endowments. This normalization rule, of the type à la Gabszewicz
and Vial, constitutes a generalization of the other one, à la Grodal, depend-
ing only on prices. The distinction between these two kinds of normalization
rules was recognized by Dierker and Grodal (1986). As is well-known, these
authors developed some examples on the non-existence of a Cournot-Walras
equilibrium, proposing the following comment: “It should be remarked that
we do not allow the normalization to depend on the production plans but
only on relative prices (see p. 168). On the other hand, the fact that price
normalization also depends on production plans is consistent with what ob-
served by Gabszewicz and Vial (1972) themselves: “[...] the price system
only defines a direction in the commodity space: this information is not
sufficient to specify how the influence that the firms exert on this direction
can affect their monetary profits. For the competitive equilibrium concept,

13



one has not to worry about this specification since, by assumption, the firms
do not exert any influence on the direction of prices. Such a specification is
needed, however, if the profit criterion is incorporated into the mode” (see p.
400). As remarked above, Gabszewicz and Vial (1972) did not consider the
role of price normalization on profits’ maximization in their main example,
but they did it using an example of a “degenerate” economy with only one
consumer thereby disposing of the Walrasian flavor of their model.

The role of normalization in the determination and the existence of a
Cournot-Nash equilibrium was considered by Dieker and Grodal (1986),
Böhm (1994), and Ginsburgh (1994), among others. In particular, Gins-
burgh (1994) considered an example of a production economy with two goods
where each good is produced by a monopolist and he showed that a change
in the normalization rules leads to different Cournot-Walras equilibria with
different welfare properties.

We study now the welfare properties of the Cournot-Walras equilibria
computed in the Section 3.

Example [Continued]. Consider the production economy specified above.
Then, the unique Walras equilibrium of the production economy (p̂, (x̂1, x̂2),
(ŷ1, ŷ2)) is Pareto optimal, it Pareto dominates the Cournot-Walras equilib-
rium (pβ, (x∗1, x

∗
2), (y

∗
1, y

∗
2)), which, in turn, Pareto dominates the Cournot-

Walras equilibrium (pγ , (x∗∗1 , x∗∗2 ), (y∗∗1 , y∗∗2 )).

Proof. The uniqueWalras equilibrium of the production economy (p̂, (x̂1, x̂2),
(ŷ1, ŷ2)) is Pareto optimal by the first fundamental theorem of welfare eco-
nomics. It Pareto dominates the Cournot-Walras equilibrium (pβ, (x∗1, x

∗
2),

(y∗1, y
∗
2)) as

u1(x̂1) = u1

(
9

4
,
27

4

)
=

9

4
(3)

3
4 >

35

17
(3)

3
4 = u1

(
35

17
,
105

17

)
= u1(x

∗
1)

and

u2(x̂2) = u2

(
27

4
,
9

4

)
=

9

4
(3)

3
4 >

35

17
(3)

3
4 = u2

(
105

17
,
35

17

)
= u2(x

∗
2).

The Cournot-Walras equilibrium (pβ, (x∗1, x
∗
2), (y

∗
1, y

∗
2)) Pareto dominates the

Cournot-Walras equilibrium (pγ , (x∗∗1 , x∗∗2 ), (y∗∗1 , y∗∗2 )) as

u1(x
∗
1) = u1

(
35

17
,
105

17

)
=

35

17
(3)

3
4 > 2(3)

3
4 = u1(2, 6) = u1(x

∗∗
1 )
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and

u2(x
∗
2) = u2

(
105

17
,
35

17

)
=

35

17
(3)

3
4 > 2(3)

3
4 = u2(6, 2) = u2(x

∗∗
2 ).

Therefore, the two Cournot-Walras equilibria computed in the Example
are not Pareto optimal as they are Pareto dominated by the unique Walras
equilibrium. Ginsburgh (1994) described this last feature of the Cournot-
Walras model observing that, in this model, “[...]on their “own behalf,”
firms (indirectly) set prices, take some surplus away from consumers who
own them and prevent the economy from achieving a Pareto optimal equi-
librium. Why would consumers, be stupid enough to fool themselves?” (see
p. 223).

This observation is related to the problem of the rationality, in terms of
consumers’ preferences, of the maximization of monetary profits as a decision
criterion for the firms. It is well known that, under perfect competition, the
consumers unanimously agree on the maximization of monetary profits of
the firms they own as shareholders, which is, therefore, their only rational
decision criterion (see, for instance, DeAngelo (1981)). The problem of the
rationality of the maximization of monetary profits as a decision for the firms
in the model of Gabszewicz and Vial (1972) was raised by a referee of their
original article which they reported as follows: “Consider a firm owned by
many consumers, all of whom are identical. Given the strategies of the other
firms in the economy, this firm chooses an output vector so as to maximize
the wealth of each of its consumers. However, it is possible that this firm
could choose a different strategy which would result in slightly lower wealth,
but in a much lower price of some particular commodity which is greatly
desired by the owners of the firm. Thus this alternative strategy might yield
greater real income to the firms owners” (see p. 395).

We use now the same structure of a production economy as that consid-
ered in the Example of Section 3 to provide a proof that the maximization
of monetary profit may not be a well-founded rationality criterion for the
firms in Gabszewicz and Vial’s model.

Example [Continued]. Consider the production economy specified above.
Moreover, consider the normalized price function pβ and the feasible pro-
duction plan of firm 2, y∗2 = (11017 ,

30
17). Then, the maximization of the profit

function pβ(y1, y
∗
2)y1 is not a rational decision criterion for firm 1.
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Proof. From the previous results, we have that y∗1 = (3017 ,
110
17 ) is the

unique feasible production plan which maximizes the profit function of
firm 1, pβ(y1, y

∗
2)y1, on G1 and that the pair (pβ∗, (x∗1, x

∗
2)) where pβ∗ =

(pβ(y∗1, y
∗
2)) = (12 ,

1
2) and (x∗1, x

∗
2) = ((3517 ,

105
17 ), (

105
17 ,

35
17)) is a Walras equi-

librium relative to (y∗1, y
∗
2). Consider the feasible production plan of firm

1, ȳ2 = (1, 8). The pair (p̄β, (x̄1, x̄2)) where p̄β = (pβ(ȳ1, y
∗
2)) = (226387 ,

161
387)

and (x̄1, x̄2) = ((757452 ,
2271
322 ), (

44535
7684 ,

14845
5474 )) is a Walras equilibrium relative to

(ȳ1, y
∗
2) as

x̄11+x̄12 = x11(p̄
β, p̄β ȳ1)+x12(p̄

β, p̄βy∗2) =
757

452
+
44535

7684
= 1+

110

17
= ȳ11+y∗12

and

x̄21+x̄22 = x21(p̄
β, p̄β ȳ1)+x22(p̄

β, p̄βy∗2) =
2271

322
+
14845

5474
= 8+

30

17
= ȳ21+y∗22.

Then, the maximization of the profit function pβ(y1, y
∗
2)y1 is not a rational

decision criterion for firm 1 as

u1(x̄1) =
757( 3

161)
3
4

2(226)
1
4

>
35(3)

3
4

17
= u1(x

∗
1).

The result is consistent with the case described by the referee quoted
by Gabszewicz and Vial (1972). Indeed, consumer 1 can be considered as
representative of a continuum of identical consumer in the interval [0, 1],
endowed with the Lebesgue measure. Given the feasible production plan of
firm 2, y∗2, the wealth of these consumers is lower at the feasible production
plan ȳ1 than at the feasible production plan y∗1 which is the unique maximum
point of the profit function of firm 1. However, the price of good 2, which
is “greatly desired” by the owners of firm 1, is also lower at the feasible
production plan ȳ1 than at the feasible production plan y∗1 as

p̄β =
161

387
<

1

2
= pβ∗.

Thus, as anticipated by the referee, the feasible production plan ȳ1 yields
greater “real income” to the owners of the firm measured in terms of a
greater utility level.

From the counterexample to their analysis raised by the quoted referee’s
report, Gabszewicz and Vial (1972) drew the conclusion that their “[...] anal-
ysis may not apply if firms are “owned” by “similar” consumers who have
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agreed beforehand on some unanimous preference ordering” (see p. 396).
However, some years later Dierker and Grodal (1986) argued that, when
each firm is owned by exactly one consumer, the analysis of Gabszewicz and
Vial (1972) can be “amended” by replacing the maximization of the indirect
utility of each consumer-owner instead of profit maximization as a decision
criterion for the firms. They sketched a model of this particular configura-
tion of the analysis proposed by Gabszewicz and Vial (1972) and of their
alternative behavioral assumption which was generalized by Grodal (1996)
who explicitly introduced the notion of Utility-Cournot-Walras equilibrium
as the appropriate equilibrium concept in this framework. We now define
the notion of Utility-Cournot-Walras equilibrium in the particular configu-
ration of the Gabszewicz and Vial model considered by Dierker and Grodal
(1986) and Grodal (1996).

Consider the production economy introduced in Section 2.
We assume that n = m, i.e., that the number of consumers is equal to

the number of firms and that, for each consumer i = 1, . . . , n, θij = 1, if
i = j, and θij = 0, if i ̸= j, for each firm j = 1, . . . , n, i.e., each firm is
owned by only one consumer.

There exists a continuous utility function ui which represents the pref-
erence relation ≿i as ≿i is rational and continuous, for each consumer i.

Given feasible production plans (y1, . . . , yn), the demand function xi(p,
p(ωi + yi)) is well defined as ≿i is rational, continuous, strongly monotone,
and strictly convex, for each consumer i.

Given a price selection p, the indirect utility function of the owner of firm
i is the function vi(p(y1, . . . , yn), p(y1, . . . , yn)(ωi+yi)) = ui(xi(p(y1, . . . , yn),
p(y1, . . . , yn)(ωi + yi))), for all feasible production plans (y1, . . . , yn).

Since the indirect utility of the owner of firm i is homogeneous of de-
gree zero in prices, it only depends on the price selection p but not on the
normalization rule.

Given a price selection p, a n-tuple of feasible production plans (y̌1, . . . , y̌n)
is a Utility-Cournot equilibrium for p if

vi(p(y̌1, . . . , y̌j . . . , y̌n), p(y̌1, . . . , y̌j . . . , y̌n)y̌j)

≥ vi(p(y̌1, . . . , yj . . . , y̌n), p(y̌1, . . . , yj . . . , y̌n)yj),

for each yj ∈ Gj and for each consumer i = 1, . . . , n.
A Utility-Cournot-Walras equilibrium is a triplet (p, (x̌1, . . . , x̌n), (y̌1, . . . ,

y̌n)) consisting of a price selection p, a n-tuple of feasible production plans
(y̌1, . . . , y̌n), and an equilibrium allocation (x̌1, . . . , x̌n) relative to (y̌1 . . . , y̌n)
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such that the pair (p(y̌1, . . . , y̌n), (x̌1, . . . , x̌n)) is a Walras equilibrium rel-
ative to (y̌1, . . . , y̌n) and (y̌1, . . . , y̌n) is a Utility-Cournot equilibrium for
p.

We can now compute a Utility-Cournot-Walras equilibrium in the same
basic framework of a production economy considered in the Example in
Section 3.

Example [Continued]. Consider the production economy specified above.
Then, the triplet (p, (x̌1, x̌2), (y̌1, y̌2)), where p(y1, y2) =
( y21+3y22
3y11+y12+y21+3y22

, 3y11+y12
3y11+y12+y21+3y22

), for all feasible production plans (y1, y2),

(x̌1, x̌2) = ((94 ,
27
4 ), (

27
4 ,

9
4)), (y̌1, y̌2) = ((1, 8), (8, 1)), is a Utility-Cournot-

Walras equilibrium.

Proof. Consider the triplet (p, (x̌1, x̌2), (y̌1, y̌2)), where p(y1, y2) =
( y21+3y22
3y11+y12+y21+3y22

, 3y11+y12
3y11+y12+y21+3y22

), for all feasible production plans (y1, y2),

(x̌1, x̌2) = ((94 ,
27
4 ), (

27
4 ,

9
4)), (y̌1, y̌2) = ((1, 8), (8, 1)). p is the unique price

selection by the previous argument. Let p̌ = p(y̌1, y̌2) = (12 ,
1
2). The pair

(p̌, (x̌1, x̌2)) is a Walras equilibrium relative to (y̌1, y̌2) as

x̌11 + x̌12 = x11(p̌, p̌y̌1) + x12(p̌, p̌y̌2) =
9

4
+

27

4
= 1 + 8 = y̌11 + y̌12

and

x̌21 + x̌22 = x21(p̌, p̌y̌1) + x22(p̌, p̌y̌2) =
27

4
+

9

4
= 8 + 1 = y̌21 + y̌22.

The indirect utility function of consumer 1, given the feasible production
plan on firm 2, y̌2, is

v1(p(y1, y̌2), p(y1, y̌2)y1)) =
4y11y21 + 3y11 + 8y21

4

(
1

y21 + 3

) 1
4
(

3

3y11 + 8

) 3
4

.

Let v̄1 denote the extension of this indirect utility function to R2
+. v̄1 is

strictly increasing in y11 and y21 as it is straightforward to verify that
∂v̄1(y1,y̌2)

∂y11
> 0 and ∂v̄1(y1,y̌2)

∂y21
> 0, for each y1 ∈ R2

+. Moreover, it is also
possible to verify, through some more cumbersome computations, that

−
(
∂v̄1(y1, y̌2)

∂y11

)2 ∂2v̄1(y1, y̌2)

∂y221
−
(
∂v̄1(y1, y̌2)

∂y21

)2 ∂2v̄1(y1, y̌2)

∂y211

+2
∂v̄1(y1, y̌2)

∂y11

∂v̄1(y1, y̌2)

∂y21

∂2v̄1(y1, y̌2)

∂y11∂y12
> 0,
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for each y1 ∈ R2
+. Then, the function v̄1 is strictly quasi-concave on G1. At

(y̌11, y̌21) = (1, 8), λ̌1 = 0, λ̌2 =
19
352(3)

3
4 , and λ̌3 =

59
352(3)

3
4 , the Kuhn-Tucker

conditions for the maximization of the function v̄1 on G1, which reduce to

y11(
∂v̄1(y1, y̌2)

∂y11
− λ1 − 2λ3) = 0,

y21(
∂v̄1(y1, y̌2)

∂y21
− λ2 − λ3) = 0,

λ1(y11 − 2) = 0,

λ2(y21 − 8) = 0,

λ3(2y11 + y21 − 10) = 0,

are satisfied as ∂v̄1(y̌1,y̌2)
∂y11

= 59
176(3)

3
4 and ∂v̄1(y̌1,y̌2)

∂y21
= 39

176(3)
3
4 . Then, (y̌11, y̌21)

is the unique feasible production plan which maximizes v̄1 on G1 as v̄1 is
strictly quasi-concave. The indirect utility function of consumer 2, given the
feasible production plan on firm 1, y̌1, is

v2(p(y̌1, y2), p(y̌1, y2)y2)) =
4y12y22 + 8y12 + 3y22

4

(
1

y12 + 3

) 1
4
(

3

3y22 + 8

) 3
4

.

Let v̄2 denote the extension of this indirect utility function to R2
+. Then,

by using, mutatis mutandis, the previous argument, it is straightforward to
verify that (y̌12, y̌22) is the unique feasible production plan which maximizes
v̄2 on G2. Hence, the triplet (p, (x̌1, x̌2), (y̌1, y̌2)) is a Utility-Cournot-Walras
equilibrium.

The Utility-Cournot-Walras equilibrium (p, (x̌1, x̌2), (y̌1, y̌2)) coincides
with the unique Walras equilibrium (p̂, (x̂1, x̂2), (ŷ1, ŷ2)) as p̂ = p(y̌1, y̌2),
(x̂1, x̂2) = (x̌1, x̌2), and (ŷ1, ŷ2) = (y̌1, y̌2) and, then, it is Pareto optimal.

Gabsszewicz and Vial (1972) argued, without providing a proof, that
the unique Walras equilibrium of their main example “[...] is not a Cournot-
Walras equilibrium” (see p. 387). However, adapting the proof of Proposi-
tion 1 in Grodal (1996) to our version of their example, we shall show that
there exists a normalization rule à la Grodal that determines a Cournot-
Walras equilibrium which coincides with the Utility-Cournot-Walras equi-
librium (p, (x̌1, x̌2), (y̌1, y̌2)) and hence with the unique Walras equilibrium
(p̂, (x̂1, x̂2), (ŷ1, ŷ2)).

According to Grodal (1996), given a continuous price selection p, the fea-
sible production plans (ȳ1, . . . , ȳm) are said to be p-dominated if, for a firm j,
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there exists a feasible production plan y′j ∈ Yj such that p(ȳ1, . . . , y
′
j , . . . , ȳm)

= p(ȳ1, . . . , ȳj , . . . , ȳm) and p(ȳ1, . . . , y
′
j , . . . , ȳm)y′j > p(ȳ1, . . . , ȳj , . . . , ȳm)ȳj .

It is immediate to verify that a price selection p and feasible production
plans (ȳ1, . . . , ȳm) which are p-dominated cannot belong to a triplet which
is a Cournot-Walras equilibrium or a Utility-Cournot-Walras equilibrium.

We now apply to our basic framework the argument of Proposition 1 in
Grodal (1996).

Example [Continued]. Consider the production economy specified above.
Moreover, consider the Utility-Cournot-Walras equilibrium (p,
(x̌1, x̌2), (y̌1, y̌2)). Then, there exists a normalization rule à la Grodal θ such
that the triplet (pθ, (x̌1, x̌2), (y̌1, y̌2)) is a Cournot-Walras equilibrium.

Proof. Consider the Utility-Cournot-Walras equilibrium (p, (x̌1, x̌2), (y̌1, y̌2)).
Clearly, the feasible production plans (y̌1, y̌2) are not p-dominated. More-
over, we have that, at the Utility-Cournot-Walras equilibrium, the profits
of both firms are strictly positive as p̌y̌1 = 9

2 = p̌y̌2 > 0. Therefore, the
assumptions of Proposition 1 in Grodal (1996) are satisfied and we can ap-
ply her argument in order to build a normalization rule θ. Consider firm
1. Let Q1 = {q ∈ [0, 1] : p1(y1, y̌2) = q, for some y1 ∈ G1}. Then, it is
straightforward to show that Q1 = [ 317 ,

11
19 ]. Let ν1 be a function defined on

[0, 1] with values in R+ such that ν1(q) = −9q + 9, for each q ∈ [0, 12), and
ν1(q) = 9q, for each q ∈ [12 , 1]. Then, ν1(q) is continuous. Moreover, we
have that ν1(q) ≥ sup{qy11 + (1 − q)y21 : p1(y1, y̌2) = q}, for each q ∈ Q1,
as ν1(q) = −9q + 9 ≥ 19q − 3 = sup{qy11 + (1− q)y21 : p1(y1, y̌2) = q}, for
each q ∈ [ 317 ,

9
23), ν1(q) = −9q + 9 ≥ −73q2+71q−6

q+2 = sup{qy11 + (1 − q)y21 :

p1(y1, y̌2) = q}, for each q ∈ [ 923 ,
1
2), ν1(q) = 9q ≥ −43q+35

3 = sup{qy11 +
(1 − q)y21 : p1(y1, y̌2) = q}, for each q ∈ [12 ,

11
19 ], ν1(p̌1) = 9

2 = p̌y̌1, and
ν1(q) ≥ 9

2 = ν1(p̌1), for each q ∈ [0, 1]. Consider firm 2. Let Q2 = {q ∈
[0, 1] : p1(y̌1, y2) = q, for some y2 ∈ G2}. Then, it is straightforward to
show that Q2 = [ 819 ,

14
17 ]. Let ν2 be a function defined on [0, 1] with val-

ues in R+ such that ν2(q) = −9q + 9, for each q ∈ [0, 12), and ν2(q) = 9q,
for each q ∈ [12 , 1]. Then, ν2(q) is continuous. Moreover, we have that
ν2(q) ≥ sup{qy12 + (1− q)y22 : p1(y̌1, y2) = q}, for each q ∈ Q2, as ν2(q) =
−9q+9 ≥ 43q−8

3 = sup{qy11+(1−q)y21 : p1(y̌1, y2) = q}, for each q ∈ [ 819 ,
1
2),

ν2(q) = 9q ≥ −73q2+75q−8
3−q = sup{qy11 + (1− q)y21 : p1(y̌1, y2) = q}, for each

q ∈ [12 ,
14
23), ν2(q) = 9q ≥ −19q+16 = sup{qy11+(1− q)y21 : p1(y̌1, y2) = q}

for each q ∈ [1423 ,
14
17 ], ν2(p̌1) = 9

2 = p̌y̌2, and ν2(q) ≥ 9
2 = ν2(p̌1), for

each q ∈ [0, 1]. Let ρ(q) be a function defined on [0, 1] with values in
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R+ such that ρ(q) = q(1 − q), for each q ∈ [0, 1]. Then, it is immedi-
ate to verify that ρ has a unique maximum in q = 1

2 = p̌1. Consider the

rule θ(y1, y2, p) =
ρ(p1)

v1(p1)v2(p1)
p, for all feasible production plans (y1, y2) and

for each p ∈ ∆. θ is a normalization rule à la Gabszewicz and Vial as
θ(y1, y2, p) =

∑2
h=1 θh(y1, y2, p)p, for all feasible production plans (y1, y2)

and for each p ∈ ∆. Moreover, it is a normalization rule à la Grodal as
θ(y1, y2, p) = θ(y′1, y

′
2, p), for all feasible production plans (y1, y2) and (y′1, y

′
2)

and for each p ∈ ∆. Consider the normalized price function pθ such that
pθ(y1, y2) = θ(y1, y2, p(y1, y2)) =

ρ(p1)
ν1(p1)ν2(p1)

p(y1, y2), for all feasible produc-

tion plans (y1, y2). We have that

pθ(y̌1, y̌2)y̌1 =
ρ(p̌1)

ν1(p̌1)ν2(p̌1)
p̌y̌1 =

ρ(p̌1)

ν2(p̌1)
≥ ρ(p1(y1, y̌2))

ν2(p1(y1, y̌2))

≥ ρ(p1(y1, y̌2))

ν1(p1(y1, y̌2))ν2(p1(y1, y̌2))
p(y1, y̌2)y1 = pθ(y1, y̌2)y1,

for each y1 ∈ G1, and

pθ(y̌1, y̌2)y̌2 =
ρ(p̌1)

ν1(p̌1)ν2(p̌1)
p̌y̌2 =

ρ(p̌1)

ν2(p̌1)
≥ ρ(p1(y̌1, y2))

ν2(p1(y̌1, y2))

≥ ρ(p1(y̌1, y2))

ν1(p1(y̌1, y2))ν2(p1(y̌1, y2))
p(y̌1, y2)y2 = pθ(y̌1, y2)y2,

for each y2 ∈ G2, as νj(p̌1) = p̌y̌j , ρ has a unique maximum in p̌1, νj(q) ≥
νj(p̌1), for each q ∈ [0, 1], and νj(q) ≥ sup{qy11+(1−q)y21 : p1(y1, y̌2) = q},
for each q ∈ Qj , for each firm j = 1, 2. Therefore, the pair of feasible
production plans (y̌1, y̌2) is a Cournot equilibrium for pθ. Hence, the triplet
(pθ, (x̌1, x̌2), (y̌1, y̌2)) is a Cournot-Walras equilibrium.

The Cournot-Walras equilibrium (pθ, (x̌1, x̌2), (y̌1, y̌2)) coincides with the
unique Walras equilibrium as pθ(y̌1, y̌2) = (19 ,

1
9) = 2

9 p̂, (x̂1, x̂2) = (x̌1, x̌2),
and (ŷ1, ŷ2) = (y̌1, y̌2) and, then, it is Pareto optimal.

5 Conclusion

In this paper, we have reviewed the main theoretical issues related to the
concept of Cournot-Walras equilibrium introduced by Gabszewicz and Vial
(1972) using, as a starting point, their own main example. This review has
led to a surprising result due to the indeterminacy generated by normaliza-
tion rules: In the Gabszewicz and Vial model, Cournotian duopolistic firms
may be Walrasian.
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Recently, Azar and Vives (2021) noticed that “Oligopoly is widespread
and allegedly on the rise. Many industries are characterized by oligopolis-
tic conditions, including, but not limited to, the digital ones dominated
by GAFAM: Google (now Alphabet), Apple, Facebook, Amazon, and Mi-
crosoft. These firms, as well as others, have influence in the aggregate econ-
omy” (see p. 1). This observation led these authors to reconsider the general
equilibrium analysis à la Cournot introduced by Gabszewicz and Vial (1972)
in order to appropriately capture some features of oligopolistic interaction in
a model of interrelated markets with a macroeconomic flavor. Their paper,
which was motivated by a huge empirical evidence showing an upsurge in
oligopoly in the real word economy, might be considered as the initial piece
of a parallel upsurge in theoretical general equilibrium models of oligopoly.
Azar and Vives (2021) considered particular production economies in which
each firm is owned by many heterogeneous shareholders.

Gabszewicz and Vial (1972), after having considered the criticism to
profit maximization as a rational criterion for the firms, already observed
that their analysis “may not apply if some firms are “owned” by “similar”
consumers who have agreed beforehand on some unanimous preference or-
dering. By contrast, if all firms are owned by many “different” consumers,
the impossibility of aggregating their various preferences justifies, by default
and as a first approximation, the use of monetary profits as an objective for
these firms” (see p. 396). We have seen that, in the case where each firm
is owned by a consumer, or a continuum of identical consumers, both the
related problems of price normalization and the rationality of the profit
criterion, can be overcome using the notion of Utility-Cournot-Walras equi-
librium proposed by Grodal (1996). We have also shown that, due to the
indeterminacy result proved by Grodal (1996), there exists a normaliza-
tion rule such that a Utility-Cournot-Walras equilibrium is also a Cournot-
Walras equilibrium at which profit maximization is a rational criterion. This
reverses the claim against their own theory formulated by Gabszewicz and
Vial (1972) which we have quoted above. In the same quotation, Gabszewicz
and Vial (1972) considered the criterion of profit maximization acceptable
as a “first approximation” when each firm is owned by many different share-
holders, whereas Grodal (1996) argued that, in this case, given the indeter-
minacy generated by normalization rules, “[...] there is no natural objective
function for the firm” (p. 19).

Azar and Vives (2021) proposed to overcome this theoretical deadlock
assuming that, in their specific model, “firm j’s objective function is to
maximize a weighted average of the (indirect) utilities of its owners, where
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the weights are proportional to the numbers of shares. In other words, we
suppose that ownership confers control in proportion to the shares owned”
(p. 1008). Nevertheless, at this stage, Grodal (1996) would object that “If
a firm has an objective function which is related to the preferences of its
shareholders one might also obtain that markets in shares of firms will be
active in equilibrium” (p. 21)...! Demichelis and Ritzberger (2011) followed
this suggestion and proposed an approach “[...] to include an analysis of
the institutions that regulate investors’ control over firms. This, of course,
transcends general equilibrium theory, that is meant to be “institution-free,”
as it requires an explicit model of what determines corporate control” (p.
222). The story continued through other papers and could continue in the
future.

Given the growing importance of oligopolistic interaction in interrelated
markets reminded above and the theoretical issues reviewed in this paper, we
think that further research should move in the shadow line between partial
and general equilibrium theory as we believe that some theory is better that
no theory at all.
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