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Abstract

We consider a bilateral oligopoly version of the Shapley window
model with large traders, represented as atoms, and small traders,
represented by an atomless part. For this model, we show that, when
atoms have Leontievian utility functions, any Walras allocation is a
Cournot-Nash allocation. This result, together with the main theorem
proved in Busetto et al. (2020), implies the equivalence between the
set of Cournot-Nash allocations and the set of Walras allocations.
Journal of Economic Literature Classification Numbers: C72, D43,
D51.

1 Introduction

Busetto et al. (2020) considered the mixed version of the bilateral oligopoly
model introduced by Codognato et al. (2015): a mixed exchange economy à
la Shitovitz (1973) where large traders are represented as atoms and small
traders are represented by an atomless part; noncooperative exchange is
formalized as in the Shapley window model, a strategic market game with
complete markets which was first proposed informally by Lloyd S. Shapley
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and further studied by Sahi and Yao (1989), Codognato and Ghosal (2000),
and Busetto et al. (2011), among others.

In this framework, they proved a theorem which implies that, when
traders in the atomless part have continuous, strongly monotone, and quasi-
concave utility functions whereas atoms have Leontievian utility functions,
any Cournot-Nash allocation is a Walras allocation.

In this note, we prove a theorem which implies that, in the bilateral
oligopoly model considered by Busetto et al. (2020), any Walras allocation
is a Cournot-Nash allocation. Moreover, we straightforwardly show that
this theorem and that proved by Busetto et al (2020) imply the equiva-
lence between the set of Cournot-Nash allocations and the set of Walras
allocations.

In Section 2, we introduce the mathematical model. In section 3, we
prove our main theorem. In Section 4, we conclude.

2 The mathematical model

We consider a pure exchange economy with large traders, represented as
atoms, and small traders, represented by an atomless part. The space of
traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) < ∞. This implies that the measure space
(T, T , µ) contains at most countably many atoms. Let T1 denote the set
of atoms and T0 the atomless part of T . We assume that µ(T1) > 0 and
µ(T0) > 0. A null set of traders is a set of measure 0. Null sets of traders are
systematically ignored throughout the paper. Thus, a statement asserted for
“each” trader in a certain set is to be understood to hold for all such traders
except possibly for a null set of traders. A coalition is a nonnull element of
T . The word “integrable” is to be understood in the sense of Lebesgue.

There are two different commodities. A commodity bundle is a point
in R2

+. An assignment (of commodity bundles to traders) is an integrable
function x: T → R2

+. There is a fixed initial assignment w, satisfying the
following assumption.

Assumption 1. There is a coalition S such that w1(t) > 0, w2(t) = 0, for
each t ∈ S, w1(t) = 0, w2(t) > 0, for each t ∈ Sc. Moreover, card(S ∩T1) ≥
2, whenever µ(S∩T0) = 0, and card(Sc∩T1) ≥ 2, whenever µ(Sc∩T0) = 0.1

1card(A) denotes the cardinality of a set A.
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An allocation is an assignment x such that
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R

2
+ → R, satisfying the following assumptions.

Assumption 2. ut : R
2
+ → R is continuous, strongly monotone, and quasi-

concave, for each t ∈ T0, and ut(x
1, x2) = min{at1x1, at2x2}, with at1 > 0

and at2 > 0, for each t ∈ T1.

Let B denote the Borel σ-algebra of R2
+. Moreover, let T

⊗
B denote

the σ-algebra generated by the sets E × F such that E ∈ T and F ∈ B.
Assumption 3. u : T × R2

+ → R, given by u(t, x) = ut(x), for each t ∈ T
and for each x ∈ R2

+, is T
⊗

B-measurable.

A price vector is a nonnull vector p ∈ R2
+. A Walras equilibrium is

a pair (p∗,x∗), consisting of a price vector p∗ ≫ 0 and an allocation x∗

such that p∗x∗(t) = p∗w(t) and ut(x
∗(t)) ≥ ut(y), for all y ∈ {x ∈ R2

+ :
p∗x = p∗w(t)}, for each t ∈ T . A Walras allocation is an allocation x∗ for
which there exists a price vector p∗ such that the pair (p∗,x∗) is a Walras
equilibrium.

Borrowing from Codognato et al. (2015), we introduce now the two-com-
modity version of the Shapley window model. A strategy correspondence is
a correspondence B : T → P(R4

+) such that, for each t ∈ T , B(t) = {(bij) ∈
R4

+ :
∑2

j=1 bij ≤ wi(t), i = 1, 2}. With some abuse of notation, we denote
by b(t) ∈ B(t) a strategy of trader t, where bij(t), i, j = 1, 2, represents the
amount of commodity i that trader t offers in exchange for commodity j.
A strategy selection is an integrable function b : T → R4

+, such that, for
each t ∈ T , b(t) ∈ B(t). Given a strategy selection b, we call aggregate
matrix the matrix B̄ such that b̄ij = (

∫
T bij(t) dµ), i, j = 1, 2. Moreover,

we denote by b \ b(t) the strategy selection obtained from b by replacing
b(t) with b(t) ∈ B(t) and by B̄ \ b(t) the corresponding aggregate matrix.

Consider the following two further definitions (see Sahi and Yao (1989)).

Definition 1. A nonnegative square matrixD is said to be irreducible if, for

every pair (i, j), with i ̸= j, there is a positive integer k such that d
(k)
ij > 0,

where d
(k)
ij denotes the ij-th entry of the k-th power Dk of D.

Definition 2. Given a strategy selection b, a price vector p is said to be
market clearing if

p ∈ R2
++,

2∑
i=1

pib̄ij = pj(
2∑

i=1

b̄ji), j = 1, 2. (1)
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By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (1) if and only if B̄ is irreducible. Then,
we denote by p(b) a function which associates with each strategy selection
b the unique, up to a scalar multiple, price vector p satisfying (1), if B̄ is
irreducible, and is equal to 0 otherwise.

Given a strategy selection b and a price vector p, consider the assignment
determined as follows:

xj(t,b(t), p) = wj(t)−
2∑

i=1

bji(t) +

2∑
i=1

bij(t)
pi

pj
, if p ∈ R2

++,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T .
Given a strategy selection b and the function p(b), traders’ final holdings

are determined according to this rule and consequently expressed by the
assignment

x(t) = x(t,b(t), p(b)),

for each t ∈ T . It is straightforward to show that this assignment is an
allocation satisfying the budget constraint p(b)x(t,b(t), p(b)) = p(b)w(t),
for each t ∈ T .

We are now able to define the notion of a Cournot-Nash equilibrium for
this reformulation of the Shapley window model (see Codognato and Ghosal
(2000) and Busetto et al. (2011)).

Definition 3. A strategy selection b̂ such that
¯̂
B is irreducible is a Cournot-

Nash equilibrium if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂ \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T .

A Cournot-Nash allocation is an allocation x̂ such that x̂(t) = x(t, b̂(t),
p(b̂)), for each t ∈ T , where b̂ is a Cournot-Nash equilibrium.

3 Walras allocations are always Cournot-Nash al-
locations

Busetto et al. (2020) proved the following result which implies that, in the
bilateral oligopoly model described in the previous section, any Cournot-
Nash allocation is a Walras allocation.
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Theorem 1. Under Assumptions 1, 2, and 3, let b̂ be a Cournot-Nash
equilibrium and let p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T .
Then, the pair (p̂, x̂) is a Walras equilibrium.

We state and prove now a new result which implies that, in the bilateral
oligopoly model described in the previous section, any Walras allocation is
a Cournot-Nash allocation.

Theorem 2. Under Assumptions 1, 2, and 3, let (p∗,x∗) be a Walras
equilibrium. Then, there exists a Cournot-Nash equilibrium b∗ such that
x∗(t) = x(t, b̂∗(t), p(b∗)), for each t ∈ T .

Proof. Let (p∗,x∗) be a Walras equilibrium. We have that p∗x∗(t) =
p∗w(t), for each t ∈ T , by Assumption 2. Then, there exist λ∗j(t) ≥ 0,
j = 1, 2,

∑2
j=1 λ

∗j(t) = 1, such that

x∗j(t) = λ∗j(t)
p∗w(t)

p∗j
,

j = 1, 2, for each t ∈ T , by Lemma 5 in Codognato and Ghosal (2000).
Let λ∗ : T → R2

+ be a function such that λ∗j(t) = λ∗j(t), j = 1, 2, for each
t ∈ T . It is straightforward to show that the function wi(t)λ∗j(t), i, j = 1, 2,
for each t ∈ T , is integrable on T . Let b∗ be a strategy selection such that
b∗
ij(t) = wi(t)λ∗j(t), i, j = 1, 2, for each t ∈ T . Suppose that b̄∗

12 = 0.
Consider the case where S ∩T1 ̸= ∅. Consider an atom τ ∈ S. We have that

x∗2(τ) =
aτ1p

∗1w1(τ)

aτ2p∗1 + aτ1p∗2
> 0.

Then, we have that

λ∗2(τ) =
aτ1p

∗2

aτ2p∗1 + aτ1p∗2
> 0.

But then, we obtain that

b∗
12(τ) = w1(τ)λ∗2(τ) > 0,

a contradiction. Consider the case where S ∩ T1 = ∅. Then, it must be that
S ⊆ T0 and Sc ∩ T1 ̸= ∅ as µ(T1) > 0 and µ(T0) > 0. Consider a trader
t ∈ S. We have that λ2(t) = 0 as b∗

12(t) = w1(t)λ2(t) = 0 and w1(t) > 0,
for each t ∈ S. Then, it must be that

x∗2(t) = λ2(t)
p∗1w1(t)

p∗2
= 0,
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for each t ∈ S. Consider an atom τ ∈ Sc. We have that

x∗2(τ) =
aτ1p

∗2w2(τ)

aτ2p∗1 + aτ1p∗2
< w2(τ).

Then, we have that∫
S
x∗2(t) dµ+

∫
Sc

x∗2(t) dµ =

∫
Sc

x∗2(t) dµ <

∫
T
w2(t) dµ,

a contradiction. We can conclude that b̄∗
12 > 0. Using, mutatis mutandis,

the previous argument, we can also conclude that b̄∗
21 > 0. Therefore, the

matrix B̄∗ is irreducible. Consider the assignment x(t, b̂∗(t), p∗), for each
t ∈ T . We have that

xj(t, b̂∗(t), p∗) = wj(t)−
2∑

i=1

b∗
ji(t) +

2∑
i=1

b∗
ij(t)

p∗i

p∗j

= wj(t)−
2∑

i=1

wj(t)λ∗i +
2∑

i=1

wi(t)λ∗j p
∗i

p∗j

= λ∗j(t)
p∗w(t)

p∗j
= x∗j(t),

j = 1, 2, for each t ∈ T . Then, we obtain that∫
T
x∗j(t) dµ =

∫
T
wj(t) dµ−

2∑
i=1

b̄∗
ji(t) +

2∑
i=1

b̄∗
ij(t)

p∗i

p∗j
=

∫
T
wj(t) dµ,

j = 1, 2, as x∗ is an allocation. But then, p∗ satisfies (1) as

2∑
i=1

p∗ib̄∗
ij = p∗j(

2∑
i=1

b̄∗
ji),

j = 1, 2, and, consequently, p∗ = p(b∗), as the matrix B̄∗ is irreducible.
Therefore, we have that x∗(t) = x(t, b̂∗(t), p(b∗)), for each t ∈ T . Suppose
that b∗ is not a Cournot-Nash equilibrium. Then, there is a trader τ and a
strategy b′(τ) ∈ B(τ) such that

uτ (x(τ, b
′(τ), p(b∗ \ b′(τ)))) > uτ (x(τ,b

∗(τ), p(b∗))).

Suppose that τ ∈ T1. Moreover, suppose, without loss of generality, that
w1(τ) = 0 and w2(τ) > 0. We have that

aτ1x
1(τ,b∗(τ), p(b∗) = aτ1x

∗1(τ) = aτ2x
∗2(τ) = aτ2x

2(τ,b∗(τ), p(b∗)),
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as x∗ is a Walras allocation. Consider the case where b′21(τ) > b∗
21(τ). It is

straightforward to verify that

x1(τ, b′(τ), p(b∗ \ b′(τ))) = b′21(τ)
b̄∗
12

b̄∗
21 − b∗

21(τ)µ(τ) + b′21(τ)µ(τ)

> b∗
21(τ)

b̄∗
12

b̄∗
21

= x1(τ,b∗(τ), p(b∗))

and

x2(τ, b′(τ), p(b∗ \ b′(τ))) = w2(τ)− b′21(τ)

< w2(τ)− b∗
21(τ) = x2(τ,b∗(τ), p(b∗)).

Then, we have that

aτ1x
1(τ, b′(τ), p(b∗ \ b′(τ))) > aτ1x

1(τ,b∗(τ), p(b∗))

= aτ2x
2(τ,b∗(τ), p(b∗)) > aτ2x

2(τ, b′(τ), p(b∗ \ b′(τ))).

But then, we obtain that

uτ (x(τ, b
′(τ), p(b∗ \ b′(τ)))) = aτ2x

2(τ, b′(τ), p(b∗ \ b′(τ)))
< aτ2x

2(t, b̂∗(t), p(b∗)) = uτ (x(τ,b
∗(τ), p(b∗))),

a contradiction. Consider the case where b′21(τ) < b∗
21(τ). Using, mutatis

mutandis, the previous argument, we have that

aτ1x
1(τ, b′(τ), p(b∗ \ b′(τ))) < aτ1x

1(τ,b∗(τ), p(b∗))

= aτ2x
2(τ,b∗(τ), p(b∗)) < aτ2x

2(τ, b′(τ), p(b∗ \ b′(τ))).

Then, it follows that

uτ (x(τ, b
′(τ), p(b∗ \ b′(τ)))) = aτ1x

1(τ, b′(τ), p(b∗ \ b′(τ)))
< aτ1x

1(τ,b∗(τ), p(b∗)) = uτ (x(τ,b
∗(τ), p(b∗))),

a contradiction. Suppose that τ ∈ T0. We have that p(b∗ \ b′(τ)) =
p(b∗) = p∗, by Lemma 1 in Codognato and Ghosal (2000). Moreover, it
is straightforward to verify that p∗x(τ, b′(τ), p∗)) = p∗w2(τ). Then, we have
that uτ (x(τ, b

′(τ), p∗)) > uτ (x
∗(τ)) and x(τ, b′(τ), p∗) ∈ {x ∈ R2

+ : p∗x =
p∗w2(τ)}, a contradiction. Hence, there exists a Cournot-Nash equilibrium
b∗ such that x∗(t) = x(t, b̂∗(t), p(b∗)), for each t ∈ T .
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Theorems 1 and 2 have the following straightforward implication con-
cerning the equivalence between the set of Cournot-Nash allocations and the
set of Walras allocations.

Corollary. Under Assumptions 1, 2, and 3, the set of Cournot-Nash allo-
cations coincides with the set of Walras allocations.

Proof. Let x̂ be a Cournot-Nash allocation. Then, we have that x̂(t) =
x(t, b̂(t), p(b̂)), for each t ∈ T , where b̂ is a Cournot-Nash equilibrium.
Moreover, the pair (p̂, x̂), where p̂ = p(b̂), is a Walras equilibrium, by
Theorem 1. Therefore, x̂ is a Walras allocation. Let x∗ be a Walras
allocation. Then, there exists a Cournot-Nash equilibrium b∗ such that
x∗(t) = x(t, b̂∗(t), p(b∗)), for each t ∈ T , by Theorem 2. Therefore, x∗

is a Cournot-Nash allocation. Hence, the set of Cournot-Nash allocations
coincides with the set of Walras allocations.

The following example, borrowed from Busetto et al. (2020), shows that
the Corollary holds non-vacuously.

Example. Consider the following specification of the exchange economy
satisfying Assumptions 1, 2, and 3. T0 = [0, 1], T1 = {2, 3}, T0 is taken with
Lebesgue measure, µ(2) = µ(3) = 1, w(t) = (4, 0), ut(x) =

√
x1 +

√
x2,

for each t ∈ T0, w(2) = w(3) = (0, 4), u2(x) = u3(x) = min{x1, x2}.
Then, the allocation x∗ such that (x∗1(t),x∗2(t)) = (43 ,

16
3 ), for each t ∈ T0,

(x∗1(2),x∗2(2)) = (x∗1(3),x∗2(3)) = (43 ,
4
3) is the unique Walras allocation,

which is also the unique Cournot-Nash allocation.

Proof. See the proof of the Example in Busetto et al. (2020).

Theorem 2 in Busetto et al. (2020) proved that, under Assumption 1,
2, and 3, in the mixed bilateral oligopoly model, the set of the Cournot-
Nash allocations of the Shapley window model coincides with the set of the
Cournot-Nash allocations of both the model of Dubey and Shubik (1978)
and its generalization proposed by Amir et al. (1990). Hence, the Corollary
can be straightforwardly extended to those models.

4 Conclusion

In the framework of a mixed bilateral oligopoly, we have here proved that,
when atoms have Leontievian utility functions, Walras allocations are al-
ways Cournot-Nash allocations. Moreover, we have shown that this result,
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together with the main theorem in Busetto et al. (2020), implies that the
set of Cournot-Nash allocations coincides with the set of Walras allocations.

We remind that the equivalence theorem between the core and the set
of Walras allocations proved by Shitovitz (1973) rests on the assumptions
that atoms’ preferences are strongly monotone. Here, we have proved the
equivalence between the set of Cournot-Nash allocations and the set of Wal-
ras allocations, a result which holds when atoms’ preferences are monotone
but not necessarily strongly monotone. Our results should stimulate a fur-
ther investigation on the validity of the core equivalence theorems when the
strong monotonicity assumption is relaxed.
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