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Abstract

In this paper, we use the integer programming approach to mech-
anism design, first introduced by Sethuraman et al. (2003), and then
systematized by Vohra (2011), to reformulate issues concerning nondic-
tatorial Arrovian social welfare functions with and without ties. Then,
we use the integer programming to prove a new result which shows
that, when the number of agents is even, a necessary and sufficient
condition for the simple majority rule to be an Arrovian social welfare
function is that it is defined on a domain which is echoic with antago-
nistic preferences. This condition is based on the definitions of echoic
and antagonistic preferences in Inada (1969).
Journal of Economic Literature Classification Number: D71.

1 Introduction

Vohra (2011) based his monograph on mechanism design on integer pro-
gramming. He claimed that this approach has basically three advantages:
simplicity, unity, and reach, meaning, respectively, that it may simplify ar-
guments, unify disparate results, and solve problems which are beyond the
reach of other approaches.
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In this paper, we use the evoked advantages of the integer program-
ming approach to analyze nondictatorial Arrovian Social Welfare Functions
(ASWFs) and the Simple Majority Rule (SMR). Our analysis is, to some ex-
tent, complementary to that undertaken by Sethuraman et al. (2006) about
anonymous monotonic ASWFs in an integer programming framework.

Sethuraman et al. (2003) developed Integer Programs (IPs) in which
variables assume values only in the set {0, 1}. These IPs were inspired
by the characterization of decomposable domains introduced by Kalai and
Muller (1977) and they allowed Sethuraman et al. (2003) to establish a one-
to-one correspondence, on domains of antisymmetric preference orderings,
between the set of feasible solutions of a binary IP and the set of ASWFs
without ties.

Busetto et al. (2015) generalized the approach proposed by Sethuraman
et al. (2003), specifying IPs in which variables are allowed to assume values
in the set {0, 12 , 1}, called ternary IPs, and they established a one-to-one
correspondence between the set of feasible solutions of a ternary IP, which
they called IP1, and the set of ASWFs with and without ties.

Here, we use IP1 to reformulate a theorem, shown by Busetto et al.
(2018), which allows to prove, as a corollary, Theorem 2 in Kalai and Muller
(1977) for nondictatorial ASWFs without ties. To this end, we use the
notion of decomposability introduced by Busetto et al. (2015). Moreover,
we restate the notion of a strictly decomposable domain, introduced by
Busetto et al. (2015), and their characterization theorem, establishing, as
a corollary, that a domain of antisymmetric preference orderings admits
nondictatorial ASWFs with ties if and only if it is strictly decomposable.

Then, we consider a reformulation of the Simple Majority Rule (SMR) in
the framework of integer programming. We first restate the integer program-
ming version, provided by Sethuraman et al. (2003), of a theorem proved by
Sen (1966), which shows that, when the number of agents is odd, a necessary
and sufficient condition for the SMR to be an ASWF is that it is defined
on a domain which does not contain a Condorcet triple. This theorem char-
acterizes the SMR as a nondictatorial ASWF without ties. Therefore, we
straightforwardly show that the domains which do not contain a Condercet
triple are decomposable. Then, we use IP1 to state and prove a new result
which shows that, when the number of agents is even, a necessary and suffi-
cient condition for the SMR to be an ASWF is that it is defined on a domain
which is echoic with antagonistic preferences, a condition based on the defi-
nitions of echoic and antagonistic preferences in Inada (1969). This theorem
characterizes the SMR as a nondictatorial ASWF with ties. Therefore, we
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straightforwardly show that the domains which are echoic with antagonistic
preferences are strictly decomposable. Finally, we show that the set of do-
mains admitting an ASWF with ties based on the SMR is a strict subset of
the set of domains admitting an ASWF without ties based on the SMR.

The paper is organized as follows. In Section 2, we introduce the notation
and the basic definitions. In Section 3, we restate the possibility theorems for
nondictatorial ASWFs with and without ties, using IP1. In Section 4, we use
IP1 to prove a new theorem which characterizes the SMR as a nondictatorial
ASWF with ties when the number of agents is even. In Section 5, we draw
some conclusions.

2 Notation and definitions

Let E be any initial finite subset of the natural numbers with at least
two elements and let |E| be the cardinality of E, denoted by n. Elements of
E are called agents.

Let E be the collection of all subsets of E. Given a set S ∈ E , let
Sc = E \ S.

Let A be a set such that |A| ≥ 3. Elements of A are called alternatives.
Let A2 denote the set of all ordered pairs of alternatives.
Let R be the set of all the complete and transitive binary relations on

A, called preference orderings.
Let Σ be the set of all antisymmetric preference orderings.
Let Ω denote a subset of Σ such that |Ω| ≥ 2. An element of Ω is called

admissible preference ordering and is denoted by p. We write xpy if x is
ranked above y under p.

A pair (x, y) ∈ A2 is called trivial if there are not p,q ∈ Ω such that xpy
and yqx. Let TR denote the set of trivial pairs. We adopt the convention
that all pairs (x, x) ∈ A2 are trivial.

A pair (x, y) ∈ A2 is nontrivial if it is not trivial. Let NTR denote the
set of nontrivial pairs.

Let Ωn denote the n-fold Cartesian product of Ω. An element of Ωn is
called a preference profile and is denoted by P = (p1,p2, . . . ,pn), where pi

is the antisymmetric preference ordering of agent i ∈ E.
A Social Welfare Function (SWF) on Ω is a function f : Ωn → R.
f is said to be “without ties” if f(Ωn) ∩ (R \ Σ) = ∅.
f is said to be “with ties” if f(Ωn) ∩ (R \ Σ) 6= ∅.
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Given P ∈ Ωn, let P (f(P)) and I(f(P)) be binary relations on A. We
write xP (f(P))y if, for x, y ∈ A, xf(P)y but not yf(P)x and xI(f(P))y if,
for x, y ∈ A, xf(P)y and yf(P)x.

A SWF on Ω, f , satisfies Pareto Optimality (PO) if, for all (x, y) ∈ A2

and for all P ∈ Ωn, xpiy, for all i ∈ E, implies xP (f(P))y.
A SWF on Ω, f , satisfies Independence of Irrelevant Alternatives (IIA)

if, for all (x, y) ∈ NTR and for all P,P′ ∈ Ωn, xpiy if and only if xp′iy, for
all i ∈ E, implies, xf(P)y if and only if xf(P′)y, and, yf(P)x if and only if
yf(P′)x.

An Arrovian Social Welfare Function (ASWF) on Ω is a SWF on Ω, f ,
which satisfies PO and IIA.

An ASWF on Ω, f , is dictatorial if there exists j ∈ E such that, for all
(x, y) ∈ NTR and for all P ∈ Ωn, xpjy implies xP (f(P))y. f is nondicta-
torial if it is not dictatorial.

Given (x, y) ∈ A2 and S ∈ E , let dS(x, y) denote a variable such that
dS(x, y) ∈ {0, 12 , 1}.

An Integer Program (IP) on Ω consists of a set of linear constraints,
related to the preference orderings in Ω, on variables dS(x, y), for all (x, y) ∈
NTR and for all S ∈ E , and of the further conventional constraints that
dE(x, y) = 1 and d∅(y, x) = 0, for all (x, y) ∈ TR.

Let d denote a feasible solution (henceforth, for simplicity, only “solu-
tion”) to an IP on Ω. d is said to be a binary solution if variables dS(x, y)
reduce to assume values in the set {0, 1}, for all (x, y) ∈ NTR, and for all
S ∈ E . It is said to be a “ternary” solution, otherwise.

A solution d is dictatorial if there exists j ∈ E such that dS(x, y) = 1,
for all (x, y) ∈ NTR and for all S ∈ E , with j ∈ S. d is nondictatorial if it
is not dictatorial.

An ASWF on Ω, f , and a solution to an IP on the same Ω, d, are said
to correspond if, for each (x, y) ∈ NTR and for each S ∈ E , xP (f(P))y if
and only if dS(x, y) = 1, xI(f(P))y if and only if dS(x, y) = 1

2 , yP (f(P))x
if and only if dS(x, y) = 0, for all P ∈ Ωn such that xpiy, for all i ∈ S, and
ypix, for all i ∈ Sc.

3 Nondictatorial Arrovian social welfare functions
and integer programming

The first formulation of an IP on Ω was proposed by Sethuraman et al.
(2003), for the case where dS(x, y) ∈ {0, 1}, for all (x, y) ∈ NTR and for
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all S ∈ E . Busetto et al. (2015) extended their approach, specifying an IP
on Ω, called IP1, in which variables dS(x, y) are allowed to assume values in
the set {0, 12 , 1} and which consists of the following set of constraints:

dE(x, y) = 1, (1)

for all (x, y) ∈ NTR;
dS(x, y) + dSc(y, x) = 1, (2)

for all (x, y) ∈ NTR and for all S ∈ E ;

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2, (3)

if dA∪U∪V (x, y), dB∪U∪W (y, z), dC∪V ∪W (z, x) ∈ {0, 1};

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) =
3

2
, (4)

if dA∪U∪V (x, y) = 1
2 or dB∪U∪W (y, z) = 1

2 or dC∪V ∪W (z, x) = 1
2 , for all

triples of alternatives x, y, z and for all disjoint and possibly empty sets
A,B,C,U, V,W ∈ E whose union includes all agents and which satisfy the
following conditions:

A 6= ∅ only if there exists p ∈ Ω such that xpzpy,

B 6= ∅ only if there exists p ∈ Ω such that ypxpz,

C 6= ∅ only if there exists p ∈ Ω such that zpypx,

U 6= ∅ only if there exists p ∈ Ω such that xpypz,

V 6= ∅ only if there exists p ∈ Ω such that zpxpy,

W 6= ∅ only if there exists p ∈ Ω such that ypzpx.

Busetto et al. (2015) showed that this ternary program can be used to
provide a general representation of ASWFs, with and without ties in the
range. In particular they showed, in their Theorem 1, that there exists a
one-to-one correspondence between the set of the solutions to IP1 on a given
Ω and the set of all ASWFs on the same Ω. We now restate this fundamental
theorem as it will be systematically used in the rest of the paper.

Theorem 1. Consider a domain Ω. Given an ASWF on Ω, f , there exists
a unique solution to IP1 on Ω, d, which corresponds to f . Given a solution
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to IP1 on Ω, d, there exists a unique ASWF on Ω, f , which corresponds to
d.

Kalai and Muller (1977) were the first who provided a complete charac-
terization of the domains of antisymmetric preference orderings which admit
nondictatorial ASWFs without ties. In their Theorem 2, they showed that
there exists a nondictatorial ASWF without ties on Ω for n ≥ 2 if and only
if Ω satisfies some conditions of decomposability.

Busetto et al. (2018) used an amended version of the IP used by Sethu-
raman et al. (2003) to give a new and simpler proof of Theorem 2 in Kalai
and Muller (1977). In order to obtain their characterization theorem, they
needed to use a reformulation of the concept of decomposability proposed
by Kalai and Muller (1977) which is based on the existence of two sets,
R1, R2 ∈ A2, which satisfy the two conditions we are going to introduce.

Consider a set R ⊂ A2. Consider the following conditions on R.

Condition 1. For all triples x, y, z, if there exist p,q ∈ Ω satisfying xpypz
and yqzqx, then (x, y) ∈ R implies that (x, z) ∈ R.

Condition 2. For all triples x, y, z, if there exist p,q ∈ Ω satisfying xpypz
and zqyqx, then (x, y) ∈ R and (y, z) ∈ R imply that (x, z) ∈ R.

A domain Ω is said to be decomposable if and only if there exist two sets
R1 and R2, with ∅ $ Ri $ NTR, i = 1, 2, such that, for all (x, y) ∈ NTR,
we have (x, y) ∈ R1 if and only if (y, x) /∈ R2; moreover, Ri, i = 1, 2, satisfies
Conditions 1 and 2.

On the basis of the reformulation of the concept of decomposability,
Busetto et al. (2018) proved a characterization theorem which can be
straightforwardly restated, in terms of IP1, in the following way.

Theorem 2. There exists a nondictatorial binary solution to IP1 on Ω, d,
for n ≥ 2, if and only if Ω is decomposable.

The previous result provides a simplified proof of Theorem 2 in Kalai and
Muller (1977) since this theorem can be obtained as a corollary of Theorem
2.

Corollary 1. There exists a nondictatorial ASWF without ties on Ω, f ,
for n ≥ 2, if and only if Ω is decomposable.

Proof. It is an immediate consequence of Theorems 1 and 2.
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In order to obtain a characterization theorem for nondictatorial ASWFs
with ties, Busetto et al. (2015) needed to restrict further the condition
of decomposability, introducing a new notion which they defined as strict
decomposability. We now provide the notion of strict decomposability.

Given a set R ⊂ A2, consider the following conditions on R.

Condition 3. There exists a set R∗ ⊂ A2, with R ∩ R∗ = ∅, such that, for
all triples x, y, z, if there exist p,q ∈ Ω satisfying xpypz and yqzqx, then
(x, y) ∈ R∗ implies that (x, z) ∈ R.

Condition 4. There exists a set R∗ ⊂ A2, with R ∩ R∗ = ∅, such that, for
all triples of alternatives x, y, z, if there exist p,q ∈ Ω satisfying xpypz
and zqyqx, then (x, y) ∈ R and (y, z) ∈ R∗ imply that (x, z) ∈ R, and
(x, y) ∈ R∗ and (y, z) ∈ R imply that (x, z) ∈ R.

A domain Ω is said to be strictly decomposable if and only if there exist
four sets R1, R2, R

∗
1, and R∗2, with Ri $ NTR, ∅ $ R∗i ⊂ NTR, i = 1, 2,

such that, for all (x, y) ∈ NTR, we have (x, y) ∈ R1 if and only if (x, y) /∈ R∗1
and (y, x) /∈ R2; (x, y) ∈ R∗1 if and only if (y, x) ∈ R∗2; moreover, Ri, i = 1, 2,
satisfies Condition 1; Ri and R∗i , i = 1, 2, satisfy Condition 2; each pair
(Ri,R

∗
i ), i = 1, 2, satisfies Conditions 3 and 4.

On the basis of the notion of strict decomposability, we can straightfor-
wardly provide the following characterization of domains admitting nondic-
tatorial ternary solutions to IP1, based on Theorem 4 Busetto et al. (2015).

Theorem 3. There exists a nondictatorial ternary solution to IP1 on Ω, d,
for n ≥ 2, if and only if Ω is strictly decomposable.

Busetto et al. (2015) then proved, in their Theorem 5, the following
generalization of Theorem 2 in Kalai and Muller (1977) for ASWFs without
ties, which we restate as a corollary of Theorem 3.

Corollary 2. There exists a nondictatorial ASWF with ties on Ω, f , for
n ≥ 2, if and only if Ω is strictly decomposable.

Proof. It is an immediate consequence of Theorems 1 and 3.

The following theorem restates Theorem 7 in Busetto et al. (2015) which
shows that a strictly decomposable domain is always decomposable.

Theorem 4. If a domain Ω is strictly decomposable, then it is decompos-
able.
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4 Simple majority rule and integer programming

In this section, we use integer programming to determine the domains on
which the Simple Majority Rule (SMR) is an ASWF and we compare them
with the domains admitting nondictatorial ASWFs analyzed in the previous
section. We start with some preliminary definition.

A solution d to an IP on Ω is a SMR solution if for each (x, y) ∈ NTR
and for each S ∈ E , dS(x, y) = 1 if and only if |S| > |Sc|, dS(x, y) = 1

2 if and
only if |S| = |Sc|, and dS(x, y) = 0 if and only if |S| < |Sc|. It is immediate
to verify that a SMR solution to an IP on Ω, d, is binary if and only if n is
odd and ternary if and only if n is even.

An ASWF on Ω, f , is said to be based on the SMR if it corresponds to a
solution to IP1 on the same Ω, d, which is a SMR solution. It is immediate
to verify that an ASWF on Ω, f , based on the SMR is nondictatorial without
ties if and only if n is odd and nondictatorial with ties if and only if n is
even.

We now restate a theorem, proved by Sethuraman et al. (2003), which
is an integer programming version of a result showed by Sen (1966). The
result is based on the following domain restriction.

A domain Ω is said to contain a Condorcet triple if there are a triple
x, y, z and p1,p2,p3 ∈ Ω such that xp1yp1z, yp2zp2x, and zp3xp3y.

We can now restate Theorem 5 in Sethuraman et al. (2003)

Theorem 5. Let n be odd. There exists a SMR binary solution to IP1 on
Ω, d, if and only if Ω does not contain a Condorcet triple.

Proof. It follows by adapting, mutatis mutandis, the proof of Theorem 5 in
Sethuraman et al. (2003) to IP1.

We can then easily derive Theorem 1 in Sen (1966) as a corollary to
Theorem 5.

Corollary 3. Let n be odd. There exists an ASWF on Ω, f , based on the
SMR if and only if Ω does not contain a Condorcet triple.

Proof. It is an immediate consequence of Theorems 1 and 5.

Theorems 5 holds when n is odd. We shall now use integer programming
to state and prove a new theorem which characterizes the domains providing
a SMR solution to IP1 when n is even. The result is based on the following
domain restriction, which combines Conditions B′′ and C introduced by
Inada (1969).
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A domain Ω is said to be echoic with antagonistic preferences if, for all
triples x, y, z, p ∈ Ω and xpypz imply that only one of the following cases
holds: (i) xqyqz or xqzqy; (ii) xqyqz or yqxqz; (iii) xqyqz or zqyqx, for
each q ∈ Ω with q 6= p.1

We can now state and prove our new characterization theorem.

Theorem 6. Let n be even. There exists a SMR ternary solution to IP1
on Ω, d, if and only if Ω is echoic with antagonistic preferences.

Proof. Let n be even. Suppose that there exists a SMR ternary solution
to IP1 on Ω, d. Suppose that Ω is not echoic with antagonistic preferences.
Consider a triple x, y, z and suppose that p ∈ Ω and xpypz. Consider the
case where |U | = n

2 = |V |. Then, we have that

dU∪V (x, y) + dU (y, z) + dV (z, x) = 2,

as dU∪V (x, y) = 1, dU (y, z) = 1
2 , and dV (z, x) = 1

2 , contradicting (4). Con-
sider the case where |U | = n

2 = |W |. Then, by using mutatis mutandis the
above argument, it follows that d contradicts (4). Consider the case where
|A| = n

2 = |B|. Then, we have that

dA(x, y) + dB(y, z) + d∅(z, x) = 1,

as dA(x, y) = 1
2 , dB(y, z) = 1

2 , and d∅(z, x) = 0, contradicting (4). Consider
the case where |A| = n

2 = |C| or the case where |B| = n
2 = |C|. Then, by

using mutatis mutandis the above argument, it follows that d contradicts
(4). We have exhausted all possible cases. Therefore, Ω must be echoic
with antagonistic preferences. Conversely, suppose that Ω is echoic with
antagonistic preferences. Determine d as follows. For each (x, y) ∈ NTR
and for each S ∈ E , dS(x, y) = 1 if and only if |S| > |Sc|, dS(x, y) = 1

2 if
and only if |S| = |Sc|, and dS(x, y) = 0 if and only if |S| < |Sc|. Then, it
is straightforward to verify that d satisfies (1) and (2). Consider a triple
x, y, z and suppose that p ∈ Ω and xpypz. Suppose that q ∈ Ω with
xqyqz. Then, we have that A = ∅, B = ∅, C = ∅, V = ∅, W = ∅. But
then, we also have that dU (x, y) = dE(x, y) = dU (y, z) = dE(y, z) = 1 and
d∅(z, x) = 0. Thus, d satisfies (3). Suppose that q ∈ Ω with xqzqy. Then,
we have that B = ∅, C = ∅, V = ∅, W = ∅. But then, we also have that
dA∪U (x, y) = dE(x, y) = 1 and d∅(z, x) = 0. Suppose that dU (y, z) = 0 or

1This definition is based on the definitions of echoic and antagonistic preferences in
Inada (1969).
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dU (y, z) = 1. Then, we have that

dA∪U (x, y) + dU (y, z) + d∅(z, x) ≤ 2,

as dA∪U (x, y) = dE(x, y) = 1 and d∅(z, x) = 0. But then, d satisfies (3).
Suppose that dU (y, z) = 1

2 . Then, we have that

dA∪U (x, y) + dU (y, z) + d∅(z, x) =
3

2
,

as dA∪U (x, y) = dE(x, y) = 1 and d∅(z, x) = 0. But then, d satisfies (4).
Suppose that q ∈ Ω with yqxqz. Then, by using mutatis mutandis the
above argument, it follows that d satisfies (3) or (4). Suppose that q ∈ Ω
with zqyqx. Then, we have that A = ∅, B = ∅, V = ∅, W = ∅. But then,
we also have that C = U c. Suppose that |U | > |U c|. Then, we have that

dU (x, y) + dU (y, z) + dC(z, x) = 2,

as dU (x, y) = 1, dU (y, z) = 1, and dC(z, x) = 0. Suppose that |U | < |U c|.
Then, we have that

dU (x, y) + dU (y, z) + dC(z, x) < 2,

as dU (x, y) = 0, dU (y, z) = 0, and dC(z, x) = 1. But then, d satisfies (3).
Suppose that |U | = |U c|. Then, we have that

dU (x, y) + dU (y, z) + dC(z, x) =
3

2
,

as dU (x, y) = 1
2 , dU (y, z) = 1

2 , and dC(z, x) = 1
2 . But then, d satisfies (4).

We have exhausted all possible cases. Therefore, d is a SMR ternary solution
to IP1 on Ω. Hence, there exists a SMR ternary solution to IP1 on Ω, d, if
and only if Ω is echoic with antagonistic preferences.

We can straightforwardly obtain the following corollary.

Corollary 4. Let n be even. There exists an ASWF on Ω, f , based on the
SMR if and only if Ω is echoic with antagonistic preferences.

Proof. It is an immediate consequence of Theorems 1 and 6.

We now investigate the relationships among the domains admitting non-
dictatorial ASWFs and those admitting an ASWF based on the SMR. We
first consider the relationship between a domain which does not contain a
Condorcet triple and a decomposable domain.
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Proposition 1. If Ω does not contain a Condorcet triple, then it is decom-
posable.

Proof. Suppose that Ω does not contain a Condorcet triple. Let n be odd.
Then, there exists a SMR binary solution to IP1 on Ω, d, by Theorem 5.
Hence, Ω is decomposable, by Theorem 2.

The next proposition shows that a domain which is echoic with antago-
nistic preferences is strictly decomposable.

Proposition 2. In Ω is echoic with antagonistic preferences, then it is
strictly decomposable.

Proof. Suppose that Ω echoic with antagonistic preferences. Let n be even.
Then, there exists a SMR ternary solution to IP1 Ω, d, by Theorem 6.
Hence, Ω is strictly decomposable, by Theorem 3.

The following example shows that the converse of Propositions 1 and 2
does not hold.

Example. Let A = {a, b, c} and Ω = {p ∈ Σ : apbpc, bpcpa, cpapb}.
Then, Ω is strictly decomposable and decomposable but it contains a Con-
dorcet triple and it is not echoic with antagonistic preferences.

Proof. Let R1 = {(a, c), (b, a), (c, b)}, R2 = ∅, R∗1 = {(a, b), (b, c), (c, a)},
R∗2 = {(b, a), (c, b), (a, c)}. We have Ri $ NTR, ∅ $ R∗i ⊂ NTR, i = 1, 2.
Moreover, for all (x, y) ∈ NTR, we have (x, y) ∈ R1 if and only if (x, y) /∈ R∗1
and (y, x) /∈ R2; (x, y) ∈ R∗1 if and only if (y, x) ∈ R∗2. R1 vacuously satisfies
Conditions 1 and 2. R∗1 vacuously satisfies Condition 2. Moreover, the pair
(R1, R

∗
1) satisfies Condition 3, as (x, y) ∈ R∗1 and (x, z) ∈ R1, and it vacu-

ously satisfies Condition 4. R2 vacuously satisfies Conditions 1 and 2. R∗2
vacuously satisfies Condition 2. Moreover, the pair (R2, R

∗
2) vacuously sat-

isfies Conditions 3 and 4. Therefore, Ω is strictly decomposable. Moreover,
Ω is decomposable, by Theorem 4. Nevertheless, Ω contains a Condorcet
triple and it is not echoic with antagonistic preferences as it admits three
ways of ordering the triple a, b, c.

Our last proposition shows that the set of domains admitting an ASWF
with ties based on the SMR is a strict subset of the set of domains admitting
an ASWF without ties based on the SMR.

Proposition 3. The set of domains admitting an ASWF based on the SMR
when n is even is a strict subset of the set of domains admitting an ASWF
based on the SMR when n is odd.
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Proof. Suppose that Ω is a domain admitting an ASWF based on the
SMR when n is even. Then, Ω is echoic with antagonistic preferences, by
Corollary 4. But then, it is straightforward to verify that it does not contain
a Condorcet triple. Therefore, Ω admits an ASWF based on the SMR
when n is odd, by Corollary 3. Thus, the set of domains admitting an
ASWF based on the SMR when n is even is a subset of the set of domains
admitting an ASWF based on the SMR when n is odd. Let A = {a, b, c}
and Ω = {p ∈ Σ : apbpc, bpcpa, apcpb}. It is immediate to verify that
Ω does not contain a Condorcet triple. Then, Ω is a domain admitting an
ASWF based on the SMR when n is odd, by Corollary 3. Nevertheless, Ω is
not echoic with antagonistic preferences as it admits three ways of ordering
the triple a, b, c. Then, Ω does not admit a ASWF based on the SMR when
n is even. Hence, the set of domains admitting an ASWF based on the SMR
when n is even is a strict subset of the set of domains admitting an ASWF
based on the SMR when n is odd.

5 Conclusion

In this paper, we have systematically used integer programming to restate
the characterization of the domains admitting nondictatorial ASWFs with
and without ties. We have applied the integer programming approach to
the SMR, which provides the most basic example of a nondictatorial ASWF
with and without ties. In particular, we have proved the main result of this
paper which shows that, when number of agents is even, a necessary and
sufficient condition for the SMR to be an ASWF is that it is defined on a
domain which is echoic with antagonistic preferences.
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