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Abstract

We consider the mixed version of a monopolistic two-commodity ex-
change economy where the monopolist, represented as an atom, holds
one commodity, and the “small traders,” represented by an atomless
part, hold the other. We provide a foundation of the monopoly solution
in this framework by formulating an explicit trading process. We show
that, under the assumption that the aggregate demand of the atom-
less part for the commodity held by the monopolist is invertible, our
monopoly solution coincides with that defined by Kats (1974). More-
over, we show that, if the aggregate demand of the atomless part is not
only invertible but also differentiable, our monopoly solution has the
geometric characterization proposed by Schydlowsky and Siamwalla
(1966).
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1 Introduction

Schydlowsky and Siamwalla (1966) opened a line of research on monopoly in
general equilibrium. Concerning pure exchange economies, they considered
a bilateral exchange where one commodity is held by one trader behaving as
a monopolist while the other is held by a “competitors’ community.” They
gave a geometrical representation of the monopoly solution as the point of
tangency between the monopolist’s indifference curve and the offer curve
of the competitors’ community. Some years later, Kats (1974) analyzed a
pure exchange economy where one trader behaves as a monopolist, “calling
the game” and maximizing his utility, whereas all the other traders in the
economy behave competitively. He claimed that the monopoly quantity-
setting solution must correspond to the monopolist’s most preferred com-
modity bundle compatible with the aggregate initial endowments and the
offer curve of the competitive traders.

In this paper, we provide a foundation of the monopoly solution in the
framework of bilateral exchange by formulating an explicit trading process:
to the best of our knowledge, this is a first attempt in this direction.

We consider the mixed version of a monopolistic two-commodity ex-
change economy introduced by Shitovitz (1973) in his Example 1, in which
one commodity is held only by the monopolist, represented as an atom, and
the other in held only by small traders, represented by an atomless part.
This framework can also be used to represent a finite exchange economy if
the atomless part is split into a finite number of types with traders of the
same type having the same endowments and preferences.

We assume that,m within this framework, a trading process works as
follows. The monopolist acts strategically making a bid of the commodity he
holds for the other commodity, while the atomless part behaves à la Walras.
Given the monopolist’s bid, prices adjust to equate the monopolist’s bid to
the aggregate net demands of the atomless part. Each trader belonging to
the atomless part then obtains his Walrasian demand whereas monopolist’s
final holding is determined as the difference between his endowment and his
bid, for the commodity he holds, and as the value of his bid in terms of
relative prices, for the other commodity. We define a monopoly equilibrium
as a strategy played by the monopolist, corresponding to a positive bid of
the commodity he holds, which guarantees him to obtain, via the trading
process described above, a most preferred final holding among those he can
achieve through his bids.

The general framework proposed in this paper to define and analyse
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monopoly equilibrium in bilateral exchange can be simplified, under the as-
sumption that the aggregate demand of the atomless part for the commodity
held by the monopolist is invertible, and compared with the standard partial
equilibrium analysis of monopoly. Indeed we show that, if this assumption
holds, at an allocation corresponding to a monopoly equilibrium, the util-
ity of the monopolist is maximal in the feasible (with respect to aggregate
endowments) complement of the offer curve of the atomless part, thereby
providing a foundation of the monopoly solution proposed by Kats (1974).
Moreover, we show that, if the aggregate demand of the atomless part for the
commodity held by the monopolist is not only invertible but also differen-
tiable, a monopoly equilibrium has the geometric characterization proposed
by Schydlowsky and Siamwalla (1966). This result lies on a notion which
has a counterpart in partial equilibrium analysis: the marginal revenue of
the monopolist.

The paper is organized as follows. In Section 2, we introduce the mathe-
matical model. In Section 3, we define the notion of a monopoly equilibrium.
In Section 4, we characterize the monopoly equilibrium when the aggregate
demand of the atomless part for the commodity held by the monopolist is
invertible. In Section 5, we draw some conclusions and we suggest some
further lines of research.

2 Mathematical model

We consider a pure exchange economy with large traders, represented as
atoms, and small traders, represented by an atomless part. The space of
traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) <∞. Let T0 denote the atomless part of T .
We assume that µ(T0) > 0.1 Moreover, we assume that T \T0 = {a}, i.e., the
measure space (T, T , µ) contains only one atom, the “monopolist.” A null
set of traders is a set of measure 0. Null sets of traders are systematically
ignored throughout the paper. Thus, a statement asserted for “each” trader
in a certain set is to be understood to hold for all such traders except possibly
for a null set of traders. The word “integrable” is to be understood in the
sense of Lebesgue.

1The symbol 0 denotes the origin of R2
+ as well as the real number zero: no confusion

will result.
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In the exchange economy, there are two different commodities. A com-
modity bundle is a point in R2

+. An assignment (of commodity bundles
to traders) is an integrable function x: T → R2

+. There is a fixed initial
assignment w, satisfying the following assumption.

Assumption 1. wi(a) > 0, wj(a) = 0 and wi(t) = 0, wj(t) > 0, for each
t ∈ T0, i = 1 or 2, j = 1 or 2, i 6= j.

An allocation is an assignment x such that
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R2

+ → R, satisfying the following assumptions.

Assumption 2. ut : R2
+ → R is continuous, strongly monotone, and

strictly quasi-concave, for each t ∈ T .

Let B denote the Borel σ-algebra of R2
+. Moreover, let T

⊗
B denote

the σ-algebra generated by the sets E × F such that E ∈ T and F ∈ B.

Assumption 3. u : T × R2
+ → R, given by u(t, x) = ut(x), for each t ∈ T

and for each x ∈ R2
+, is T

⊗
B-measurable.

In order to state a last assumption, we need a preliminary definition. We
say that commodities i, j stand in relationQ if wi(t) > 0, for each t ∈ T0, and
there is a nonnull subset T i of T0 such that ut(·) is differentiable, additively

separable, i.e., ut(x) = vit(x
i) + vjt (x

j), for each x ∈ R2
+, and

dvjt (0)
dxj

= +∞,
for each t ∈ T i.2 Then, our last assumption can be formulated as follows.

Assumption 4. Commodities i, j stand in relation Q.

A price vector is a nonnull vector p ∈ R2
+. Let X0 : T0 × R2

++ →
P(R2

+) be a correspondence such that, for each t ∈ T0 and for each p ∈
R2

++, X0(t, p) = argmax{u(x) : x ∈ R2
+ and px ≤ pw(t)}. For each p ∈

R2
++, let

∫
T0

X0(t, p) dµ = {
∫
T0

x(t, p) dµ : x(·, p) is integrable and x(t, p) ∈
X0(t, p), for each t ∈ T0}. Since the correspondence X0(t, ·) is nonempty
and single-valued, by Assumption 2, it is possible to define the Walrasian
demand of traders in the atomless part as the function x0 : T0×R2

++ → R2
+

such that X0(t, p) = {x0(t, p)}, for each t ∈ T0 and for each p ∈ R2
++. We

can now state and show the following proposition.

2In this definition, differentiability means continuous differentiability and is to be un-
derstood as including the case of infinite partial derivatives along the boundary of the
consumption set (for a discussion of this case, see, for instance, Kreps (2012), p. 58).
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Proposition 1. Under Assumptions 1, 2, and 3, the function x0(·, p) is
integrable and

∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ for each p ∈ R2
++.

Proof. Let p ∈ Rl++. Then, the graph of the correspondence X(·, p),
{(t, x) : x ∈ X(·, p)}, is a subset of T

⊗
B, by the same argument as that

used by Busetto et al. (2011) (see the proof of their Proposition). But
then, by the measurable choice theorem in Aumann (1969), there exists a
measurable function x̄(·, p) such that, x̄(t, p) ∈ X(t, p), for each t ∈ T0,

which is also integrable as x̄j(t, p) ≤
∑l
i=1 p

iwi(t)

pj
, j = 1, 2, for each t ∈ T0.

We must have that x0(·, p) = x̄(·, p) as X0(t, p) = {x0(t, p)}, for each t ∈ T0.
Hence, the function x0(·, p) is integrable and

∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ,

for each p ∈ R2
++.

3 Monopoly equilibrium

We now provide the definition of a monopoly equilibrium in the bilateral
exchange model introduced in the previous section. Let E(a) = {(eij) ∈
R4

+ :
∑2

j=1 eij ≤ wi(a), i = 1, 2} denote the strategy set of atom a. We
denote by e ∈ E(a) a strategy of atom a, where eij , i, j = 1, 2, represents
the amount of commodity i that atom a offers in exchange for commodity j.
Moreover, we denote by E the matrix corresponding to a strategy e ∈ E(a).

We then provide the following definitions.

Definition 1. A square matrix C is said to be triangular if cij = 0 whenever
i > j or cij = 0 whenever i < j.

Definition 2. Given a strategy e ∈ E(a), a price vector p is said to be
market clearing if

p ∈ R2
++,

∫
T0

x0j(t, p) dµ+
2∑
i=1

eijµ(a)
pi

pj
=

∫
T0

wj(t) dµ+
2∑
i=1

ejiµ(a), (1)

j = 1, 2.

The following proposition shows that market clearing price vectors can
be normalized.

Proposition 2. Under Assumptions 1, 2, and 3, if p is a market clearing
price vector, then αp, with α > 0, is also a market clearing price vector.

Proof. It straightforwardly follows from homogeneity of degree zero of the
function x0(t, ·), for each t ∈ T0, and from (1).
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Henceforth, we say that a price vector p is normalized if p ∈ ∆ where
∆ = {p ∈ R2

+ :
∑2

i=1 p
i = 1}. Moreover, we denote by ∂∆ the boundary of

the unit simplex ∆.
The next proposition shows that the two equations in (1) are not inde-

pendent.

Proposition 3. Under Assumptions 1, 2, and 3, given a strategy e ∈ E(a),
a price vector p ∈ ∆ \ ∂∆ is market clearing for j = 1 if and only if it is
market clearing for j = 2.

Proof. Let a strategy e ∈ E(a) be given. Suppose, without loss of generality,
that w1(a) > 0. Let p ∈ ∆ \∂∆ be a price vector. Suppose that p is market
clearing for j = 1. Then, (1) reduces to∫

T0

x01(t, p) = e12µ(a).

We have that

p1

∫
T0

x01(t, p) dµ+ p2

∫
T0

x02 dµ(t, p) = p2

∫
T0

w2(t) dµ,

as p1x01(t, p) + p2x02(t, p) = p2w2(t), by Assumption 2, for each t ∈ T0.
Then, we have that∫

T0

x02 dµ(t, p) + e12µ(a)
p1

p2
=

∫
T0

w2(t) dµ.

Therefore, p is market clearing for j = 2. Suppose now that (1) is satisfied
for j = 2. Then, (1) reduces to∫

T0

x02 dµ(t, p) + e12µ(a)
p1

p2
=

∫
T0

w2(t) dµ.

But then, we have that

p2

∫
T0

x02 dµ(t, p) + p1e12µ(a) = p2

∫
T0

w2(t) dµ.

On the other hand, we know from the previous argument that

p1

∫
T0

x01(t, p) dµ+ p2

∫
T0

x02 dµ(t, p) = p2

∫
T0

w2(t) dµ.
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Then, we obtain that ∫
T0

x01(t, p) = e12µ(a).

Therefore, p is market clearing for j = 1. Hence, p ∈ ∆ \ ∂∆ is market
clearing for j = 1 if and only if it is market clearing for j = 2.

To prove the next proposition, according to Debreu (1982) we let |x| =∑2
i=1 |xi|, for each x ∈ R2

+, and d[0, V ] = infx∈V |x|, for each V ⊂ R2
+.

The proposition is based on Property (iv) of the aggregate demand of an
atomless set of traders established by Debreu (1982), p. 728.

Proposition 4. Under Assumptions 1, 2, and 3, let {pn} be a sequence of
normalized price vectors such that pn ∈ ∆ \ ∂∆, for each n = 1, 2, . . ., and
which converges to a normalized price vector p̄. If p̄i = 0 and wi(a) > 0,
then the sequence {

∫
T0

x0i(t, pn) dµ} diverges to +∞.

Proof. Let {pn} be a sequence of normalized price vectors such that pn ∈
∆ \ ∂∆, for each n = 1, 2, . . ., which converges to a normalized price vector
p̄. Suppose, without loss of generality, that p̄1 = 0 and w1(a) > 0. Then,
we have that p̄2 = 1. But then, the sequence {d[0,X0(t, pn)]} diverges to
+∞ as p̄2w2(t) > 0, for each t ∈ T0, by Lemma 4 in Debreu (1982), p.
721. Therefore, the sequence {d[0,

∫
T0

X0(t, pn) dµ]} diverges to +∞, by
the argument used in the proof of Property (iv) in Debreu (1982), p. 728.
This implies that the sequence

∑2
i=1{

∫
T0

x0i(t, pn) dµ} diverges to +∞ as∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ, for each p ∈ ∆ \ ∂∆, by Proposition 1.

Suppose that the sequence {
∫
T0

x02(t, pn) dµ} diverges to +∞. Then, there

exists an n0 such that
∫
T0

x02(t, pn) dµ >
∫
T0

w2(t) dµ, for each n ≥ n0. But

we have that x02(t, p) ≤ w2(t), for each t ∈ T0 and for each p ∈ ∆ \ ∂∆,
a contradiction. Then, the sequence {

∫
T0

x01(t, pn) dµ} diverges to +∞.

Hence, the sequence {
∫
T0

x0i(t, pn) dµ} diverges to +∞ whenever p̄i = 0 and

wi(a) > 0.

The following proposition provides a necessary and sufficient condition
for the existence of a market clearing price vector.

Proposition 5. Under Assumptions 1, 2, 3, and 4, given a strategy e ∈
E(a), there exists a market clearing price vector p ∈ ∆ \ ∂∆ if and only if
the matrix E is triangular.

Proof. Suppose, without loss of generality, that w1(a) > 0 and let e ∈ E(a)
be a strategy. Suppose that there exists a market clearing price vector p ∈
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∆\∂∆ and that the matrix E is not triangular. Then, it must be that e12 =
0. But then, we have that

∫
T 2 x01(t, p) dµ = 0 as µ(T 2) > 0, by (1). Consider

a trader τ ∈ T 2. We have that ∂uτ (x0(τ,p))
∂x1

= +∞ as 2 and 1 stand in the

relation Q and ∂uτ (x0(τ,p))
∂x1

≤ λp̂1, by the necessary conditions of the Kuhn-
Tucker theorem. Moreover, it must be that x02(τ, p) = w2(τ) > 0 as uτ (·) is

strongly monotone, by Assumption 2, and pw(τ) > 0. Then, ∂uτ (x0(τ,p))
∂x2

=
λp2, by the necessary conditions of the Kuhn-Tucker theorem. But then,
∂uτ (x̂(τ))

∂x2
= +∞ as λ = +∞, contradicting the assumption that uτ (·) is

continuously differentiable. Therefore, the matrix E must be triangular.
Suppose now that E is triangular. Then, it must be that e12 > 0. Let {pn}
be a sequence of normalized price vectors such that pn ∈ ∆ \ ∂∆, for each
n = 1, 2, . . ., which converges to a normalized price vector p̄ such that p̄1 =
0. Then, the sequence {

∫
T0

x01(t, pn) dµ} diverges to +∞, by Proposition

4. But then, there exists an n0 such that
∫
T0

x01(t, pn) dµ > e12µ(a), for

each n ≥ n0. Therefore, we have that
∫
T0

x01(t, pn0) dµ > e12µ(a). Let

q ∈ ∆\∂∆ be a price vector such that
q2

∫
T0

w2(t) dµ

q1
= e12µ(a). Consider first

the case where
∫
T0

x01(t, q) dµ = e12µ(a). Then, q is market clearing as it is
market clearing for j = 1, by Proposition 3. Consider now the case where∫
T0

x01(t, q) dµ 6= e12µ(a). Then, it must be that
∫
T0

x01(t, q) dµ < e12µ(a) as

x01(t, q) ≤ q2w2(t)
q1

, for each t ∈ T0. But then, we have that
∫
T0

x01(t, q) dµ <

e12µ(a) <
∫
T0

x01(t, pn0) dµ. Let O ⊂ ∆ \ ∂∆ be a compact and convex

set which contains pn0 and q. Then, the correspondence
∫
T0

X0(t, ·) dµ is
upper hemicontinuous on O, by the argument used in the proof of Property
(ii) in Debreu (1982), p. 728. But then, the function {

∫
T0

x01(t, ·) dµ} is

continuous on O as
∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ, for each p ∈ ∆ \ ∂∆,
by Proposition 1. Therefore, there is a price vector p∗ ∈ ∆ \ ∂∆ such
that

∫
T0

x01(t, p∗) dµ = e12µ(a), by the intermediate value theorem. Then,
p∗ is market clearing as it is market clearing for j = 1, by Proposition 3.
Hence, given a strategy e ∈ E(a), there exists a market clearing price vector
p ∈ ∆ \ ∂∆ if and only if the matrix E is triangular.

We denote now by π(e) a correspondence which associates, with each
strategy e ∈ E(a), the set of price vectors p satisfying (1), if E is triangular,
and is equal to {0}, otherwise. A price selection p(e) is a function which
associates, with each strategy selection e ∈ E(a), a price vector p ∈ π(e).

Given a strategy e ∈ E(a) and a price vector p, consider the assignment
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determined as follows:

xj(a, e, p) = wj(a)−
2∑
i=1

eji +

2∑
i=1

eij
pi

pj
, if p ∈ R2

++,

xj(a, e, p) = wj(a), otherwise,

j = 1, 2,

xj(t, p) = x0j(t, p), if p ∈ R2
++,

xj(t, p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T0.
Given a strategy e ∈ E(a) and a price selection p(e), traders’ final hold-

ings are determined according to this rule and consequently expressed by
the assignment

x(a) = x(a, e, p(e)),

x(t) = x(t, p(e)),

for each t ∈ T0.
The next proposition shows that traders’ final holdings are an allocation.

Proposition 6. Under Assumptions 1, 2, 3, and 4, given a price selection
p(·) and a strategy e ∈ E(a), the assignment x(a) = x(a, e, p(e)), x(t) =
x(t, p(e)), for each t ∈ T0, is an allocation.

Proof. Let a price selection p(·) and a strategy e ∈ E(a) be given. Suppose
that E is not triangular. Then, we have that x(a) = x(a, e, p(e)) = w(a)
and x(t) = x(t, p(e)) = w(t), for each t ∈ T0 as p(e) = 0. Suppose that E is
triangular. Then, we have that∫
T

xj(t) dµ = (wj(a)−
2∑
i=1

eji+

2∑
i=1

eij
pi

pj
)µ(a)+

∫
T0

x0j(t, p) dµ =

∫
T

wj(t) dµ,

j = 1, 2, as p(e) is market clearing. Hence, given a price selection p(·) and a
strategy e ∈ E(a), the assignment x(a) = x(a, e, p(e)), x(t) = x(t, p(e)), for
each t ∈ T0, is an allocation.

We can now provide the definition of a monopoly equilibrium.
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Definition 3. A strategy ẽ ∈ E(a) such that Ẽ is triangular is a monopoly
equilibrium, with respect to a price selection p(·), if

ua(x(a, ẽ, p(ẽ)) ≥ ua(x(a, e, p(e)),

for each e ∈ E(a).

A monopoly allocation is an allocation x̃ such that x̃(a) = x(a, ẽ, p(ẽ))
and x̃(t) = x0(t, p(ẽ)), for each t ∈ T0, where ẽ is a monopoly equilibrium.

4 Monopoly equilibrium and invertible aggregate
demand

The analysis of the monopoly problem in bilateral exchange proposed in the
previous sections can be simplified by introducing the assumption that the
aggregate demand of the atomless part for the commodity held by the mo-
nopolist is invertible and compared, under this restriction, with the standard
partial equilibrium analysis of monopoly.

The following proposition states a necessary and sufficient condition for
the atomless part’s aggregate demand to be invertible.

Proposition 7. Under Assumptions 1, 2, 3, and 4, let wi(a) > 0. Then,
the function

∫
T0

x0i(t, ·) dµ is invertible if and only if, for each x ∈ R++,

there is a unique p ∈ ∆ \ ∂∆ such that x =
∫
T0

x0i(t, p) dµ.

Proof. Let wi(a) > 0. Suppose that
∫
T0

x0i(t, p) dµ = 0, for some p ∈ ∆ \
∂∆. Then, we have that

∫
T i x

0i(t, p) dµ = 0 as µ(T i) > 0 and the necessary
Kuhn-Tucker conditions lead, mutatis mutandis, to the same contradiction
as in the proof of Proposition 5. But then, we have that

∫
T0

x0i(t, p) dµ > 0,

for each p ∈ ∆ \ ∂∆. Therefore, the function
∫
T0

x0i(t, ·) dµ is restricted to
the codomain R++. For each x ∈ R++, there exists at least one p ∈ ∆ \ ∂∆
such that x =

∫
T0

x0i(t, p) dµ, by the same argument used in the proof of

Proposition 5. Then, the function
∫
T0

x0i(t, ·) dµ is onto as its range coincides

with its codomain. Therefore, the function
∫
T0

x0i(t, ·) dµ is invertible if

and only if it is one-to-one. Hence, the function
∫
T0

x0i(t, ·) dµ is invertible
if and only, for each x ∈ R++, there is a unique p ∈ ∆ \ ∂∆ such that
x =

∫
T0

x0i(t, p) dµ.

Let p0i(·) denote the inverse of the function
∫
T0

x0i(t, ·) dµ. The following
proposition shows that when the aggregate demand of the atomless part for
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the commodity held by the monopolist is invertible, there exists a unique
price selection.

Proposition 8. Under Assumptions 1, 2, 3, and 4, if wi(a) > 0 and the
function

∫
T0

x0i(t, ·) dµ is invertible, then there exists a unique price selection
p̊(·).

Proof. Suppose that wi(a) > 0 and that the function
∫
T0

x0i(t, ·) dµ is
invertible. Let p̊(e) be a function which associates, with each strategy e ∈
E(a), the price vector p = p0i(eijµ(a)), if E is triangular, and is equal to
{0}, otherwise. Then, p̊(·) is the unique price selection as π(e) = {p̊(e)}, for
each e ∈ E(a).

By analogy with partial analysis, p̊(·) can be called the inverse demand
function of the monopolist. When the aggregate demand of the atomless
part for the commodity held by the monopolist in invertible, the monopoly
equilibrium can be reformulated as in Definition 3, with respect to monop-
olist’s inverse function p̊(·).

Moreover, under this assumption, the monopoly equilibrium can be char-
acterized by means of the notion of offer curve of the atomelss part, defined
as set {x ∈ R2

+ : x =
∫
T0

x0(t, p) dµ for some p ∈ ∆ \ ∂∆}.
If wi(a) > 0 and the function

∫
T0

x0i(t, ·) dµ is invertible, we let h(·) be
a function, defined on R++, such that

pixi + pjxj = pi
∫
T0

wi(t) dµ+ pj
∫
T0

wj(t) dµ,

where p = p0i(xi) and xj = h(xi).
The following proposition shows that the function h(·) represents the

offer curve of the atomless part in the sense that its graph coincides with
the atomless part’s offer curve.

Proposition 9. Under Assumptions 1, 2, 3, and 4, if wi(a) > 0 and the
function

∫
T0

x0i(t, ·) dµ is invertible, then the graph of the function h(·),
the set {x ∈ R2

+ : xj = h(xi)}, coincides with the set {x ∈ R2
+ : x =∫

T0
x0(t, p) dµ for some p ∈ ∆ \ ∂∆}, the offer curve of the atomless part.

Proof. Suppose that wi(a) > 0 and that the function
∫
T0

x0i(t, ·) dµ is

invertible. Suppose that x̄ ∈ {x ∈ R2
+ : xj = h(xi)}. Then, there is

a unique price vector p̄ = p0i(x̄i) such that x̄i =
∫
T0

x0i(t, p̄) dµ, as the

11



function
∫
T0

x0i(t, ·) dµ is invertible. We have that

p̄i
∫
T0

x0i(t, p̄) dµ+ p̄j
∫
T0

x0j(t, p̄) dµ = pi
∫
T0

wi(t) dµ+ pj
∫
T0

wj(t) dµ,

by Walras’ law. Then, it must be that x̄j =
∫
T0

x0j(t, p̄) dµ, where x̄j =

h(x̄i). But then, x̄ ∈ {x ∈ R2 : x =
∫
T0

x0(t, p) dµ for some p ∈ ∆ \ ∂∆}.
Therefore, {x ∈ R2

+ : xj = h(xi)} ⊂ {x ∈ R2
+ : x =

∫
T0

x0(t, p) dµ for some

p ∈ R2
++}. Suppose now that x̄ ∈ {x ∈ R2 : x =

∫
T0

x0(t, p) dµ for some p ∈
∆ \ ∂∆}. Let p̄ be such that x̄ =

∫
T0

x0(t, p̄) dµ. Then, we have that

p̄ = p0i(x̄i) as the function
∫
T0

x0i(t, ·) dµ is invertible. We have that

p̄ix̄i + p̄j x̄j = p̄i
∫
T0

wi(t) + pj
∫
T0

wj(t),

by Walras’ law. Then, we have that x̄j = h(x̄i). But then, x̄ ∈ {x ∈
R2

+ : xj = h(xi)}. Therefore, {x ∈ R2
+ : x =

∫
T0

x0(t, p) dµ for some p ∈
∆ \ ∂∆} ⊂ {x ∈ R2

+ : xj = h(xi)}. Hence, the graph of the function h(·),
the set {x ∈ R2

+ : xj = h(xi)}, coincides with the set {x ∈ R2
+ : x =∫

T0
x0(t, p) dµ for some p ∈ ∆ \ ∂∆}, the offer curve of the atomless part.

A first characterization of a monopoly equilibrium can now be provided
introducing the notion of feasible complement of the offer curve of the atom-
less part. It is defined as the set {x ∈ R2

+ : xµ(a) +
∫
T0

x0(t, p) dµ =∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}.

The following proposition shows that, when the aggregate demand of the
atomless part for the commodity held by the monopolist is invertible, the
feasible complement of the atomless part’s offer curve is a subset of the set
of the monopolist’s final holdings.

Proposition 10. Under Assumptions 1, 2, 3, and 4, if wi(a) > 0 and the
function

∫
T0

x0i(t, ·) dµ is invertible, then the feasible complement of the of-

fer curve of the atomless part, the set {x ∈ R2
+ : xµ(a) +

∫
T0

x0(t, p) dµ =∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}, is a subset of the set {x ∈ R2

+ : x =
x(a, e, p̊(e)) for some e ∈ E(a)}, the set of the final holdings of the monop-
olist.

Proof. Suppose, without loss of generality, that w1(a) > 0 and that∫
T0

x01(t, ·) dµ is invertible. Suppose that x̄ ∈ {x ∈ R2
+ : xµ(a) +

∫
T0

x0(t, p)

dµ =
∫
T w(t) dµ for some p ∈ ∆\∂∆}. Moreover, suppose that x̄1 = w1(a).
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Then, we have that
∫
T0

x01(t, p) dµ = 0, for some p ∈ ∆ \ ∂∆. But then,

we have that
∫
T 2 x01(t, p) dµ = 0 as µ(T 2) > 0 and the necessary Kuhn-

Tucker conditions lead, mutatis mutandis, to the same contradiction as in
the proof of Proposition 5. Therefore, we must have that 0 ≤ x̄1 < w1(a).
Let e ∈ E(a) be such that ē12 = w1(a)− x̄1 and let p̄ = p̊(ē). Then, we have
that

x̄1µ(a)+

∫
T0

x01(t, p̄) dµ = (w1(a)− ē12)µ(a)+

∫
T0

x01(t, p̄) dµ = w1(a)µ(a),

as p̄ = p̊(ē). Moreover, p̄ is the unique price vector such that

(w1(a)− x̄1)µ(a) =

∫
T0

x01(t, p̄) dµ,

as the function
∫
T0

x01(t, ·) dµ is invertible. Then, it must be that

x̄2µ(a) +

∫
T0

x02(t, p̄) dµ =

∫
T0

w2(t) dµ,

by Proposition 3. But then, we have that

x̄2 = e12
p̄1

p̄2
,

as p̄ is market clearing. Therefore, we conclude that

x̄ = x(a, ē, p̄) = x(a, ē, p̊(ē)).

Hence, the feasible complement of the offer curve of the atomless part, the
set {x ∈ R2

+ : xµ(a) +
∫
T0

x0(t, p) dµ =
∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}, is

a subset of the set {x ∈ R2
+ : x = x(a, e, p̊(e)) for some e ∈ E(a)}, the set

of the final holdings of the monopolist.

Then, we can show the following corollary to Proposition 10. It es-
tablishes that, at a monopoly allocation, the utility of the monopolist is
maximal on the feasible complement of the atomless part’s offer curve and,
consequently, it provides a foundation of the monopoly solution proposed
by Kats (1974).

Corollary 1. Under Assumptions 1, 2, 3, and 4, if wi(a) > 0, the function∫
T0

x0i(t, ·) dµ is invertible, and ẽ ∈ E(a) is a monopoly equilibrium, then
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ua(x(a, ẽ, p̊(ẽ))) is maximal in the set {x ∈ R2
+ : xµ(a) +

∫
T0

x0(t, p) dµ =∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}.

Proof. Suppose, without loss of generality, that w1(a) > 0 and that the
function

∫
T0

x01(t, ·) dµ is invertible. Let ẽ ∈ E(a) be a monopoly equilib-
rium. Let p̃ = p̊(ẽ). We have that

x1(a, ẽ, p̃)µ(a) +

∫
T0

x01(t, p̃) dµ = (w1(a)− ẽ12)µ(a) +

∫
T0

x01(t, p̃) dµ

= w1(a)µ(a),

and

x2(a, ẽ, p̃)µ(a) +

∫
T0

x02(t, p̃) dµ = ẽ12µ(a)
p̃1

p̃2
+

∫
T0

x02(t, p̃) dµ

=

∫
T0

w2(t) dµ,

as p̃ is market clearing. Then, we have shown that x(a, ẽ, p̊(ẽ)) ∈ {x ∈
R2

+ : xµ(a) +
∫
T0

x0(t, p) dµ =
∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}. But then,

we have that ua(x(a, ẽ, p̊(ẽ))) is maximal in the set {x ∈ R2
+ : xµ(a) +∫

T0
x0(t, p) dµ =

∫
T w(t) dµ for some p ∈ ∆ \ ∂∆} as ua(x(a, ẽ, p̊(ẽ)) ≥

ua(x(a, e, p̊(e)), for each e ∈ E(a), and {x ∈ R2
+ : xµ(a) +

∫
T0

x0(t, p) dµ =∫
T w(t) dµ for some p ∈ ∆\∂∆} ⊂ {x ∈ R2

+ : x = x(a, e, p̊(e)) for some e ∈
E(a)}, by Proposition 10.

We show now that, under the assumption that the aggregate demand
of the atomless part for the commodity held by the monopolist is not only
invertible but also differentiable, the monopoly equilibrium introduced in
Definition 3 has also the geometric characterization previously proposed by
Schydlowsky and Siamwalla (1966): at a strictly positive monopoly alloca-
tion the monopolist’s indifference curve is tangent to the atomless part’s
offer curve.3 We do it by introducing in our general framework a notion
which has a counterpart in partial equilibrium analysis: the marginal rev-
enue of the monopolist. In the rest of this section, to save in notation but
with some abuse, given a price vector (pi, pj) ∈ ∆ \ ∂∆, we denote by p the

scalar p = pi

pj
, whenever wi(a) > 0. Suppose that wi(a) > 0, that the func-

tion
∫
T0

x0i(t, ·) dµ is invertible, and that the function p0i(·) is differentiable.

3This characterization of the monopoly equilibrium has been diffusely reproposed in
standard textbooks in microeconomics (see, for instance, Varian (2014) p. 619, among
others).
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Then, p̊(·), the inverse demand function of the monopolist, is differentiable

and we have that dp̊(e)
deij

=
dp0i(eijµ(a))

dxi
µ(a), at each e ∈ E(a) such that E is

triangular, by Proposition 8. In this context, the revenue of the monopolist
can be defined as p̊(e)eij and his marginal revenue as dp̊(e)

deij
eij + p̊(e), for each

e ∈ E(a) such that E is triangular.
In order to provide the geometric characterization of a monopoly equi-

librium, we need to introduce also the following assumption.

Assumption 5. ua : R2
+ → R is differentiable.

Then, the next proposition provides a formal foundation to the geomet-
ric characterization of the monopoly equilibrium proposed by Schydlowsky
and Siamwalla (1966). Indeed, it establishes that, at an interior monopoly
solution, the slope of the monopolist’s indifference curve and the slope of the
atomless part’s offer curve are both equal to the opposite of the monopolist’s
marginal revenue, thereby showing the tangency of those two curves.

Proposition 11. Under Assumptions 1, 2, 3, 4, and 5, if wi(a) > 0, the
function

∫
T0

x0i(t, ·) dµ is invertible, the function p0i(·) is differentiable, and

ẽ ∈ E(a) is a monopoly equilibrium such that ẽ < wi(a), then

−
∂ua(x̃(a)
∂xi

∂ua(x̃(a))
∂xj

= −
(
dp̊(ẽ)

deij
ẽij + p̊(ẽ)

)
=
dh(
∫
T0

x̃i(t) dµ)

dxi
,

where x̃ is the monopoly allocation corresponding to ẽ.

Proof. Suppose that wi(a) > 0, that the function
∫
T0

x0i(t, ·) dµ is invertible

and that the function p0i(·) is differentiable. Let ẽ ∈ E(a) be a monopoly
equilibrium such that ẽ < wi(a) and let x̃ be the corresponding monopoly
allocation. Then, p̊(·), the inverse demand function of the monopolist, is
differentiable and the necessary Kuhn-Tucker conditions imply that

−∂ua(x̃(a))

∂xi
+
∂ua(x̃(a))

∂xj

(
dp̊(ẽ)

deij
ẽij + p̊(ẽ)

)
= 0.

Then, we have that

−
∂ua(x̃(a)
∂xi

∂ua(x̃(a))
∂xj

= −
(
dp̊(ẽ)

deij
ẽij + p̊(ẽ)

)
.

Moreover, we have that

h(xi) = −p0i(xi)xi +

∫
T0

wj(t) dµ.
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Differentiating the function h(·), we obtain

dh(xi)

xi
= −

(
dp0i(xi)

dxi
xi + p0i(xi)

)
.

At the monopoly allocation x̃, we have that

dp̊(ẽ)

deij
ẽij + p̊(ẽ) =

dp0i(
∫
T0

x̃i(t) dµ)

dxi

∫
T0

x̃i(t) dµ+ p0i(

∫
T0

x̃i(t) dµ),

as dp̊(ẽ)
deij

=
dp0i(ẽijµ(a))

dxi
µ(a) and ẽ12µ(a) =

∫
T0

x0i(t, p(ẽ)) dµ. Hence, we have

that

−
∂ua(x̃(a)
∂xi

∂ua(x̃(a))
∂xj

= −
(
dp̊(ẽ)

deij
ẽij + p̊(ẽ)

)
=
dh(
∫
T0

x̃i(t) dµ)

dxi
.

Finally, We provide an example of the geometric characterization of a
monopoly equilibrium proposed by Schydlowsky and Siamwalla (1966).

Example. Consider the following specification of an exchange economy sat-
isfying Assumptions 1, 2, 3, 4, and 5. T0 = [0, 1], T \ T0 = {a}, T0 is taken
with Lebesgue measure, µ(2) = 1, w(t) = (0, 1), ut(x) =

√
x1 + x2, for

each t ∈ T0, w(a) = (1, 0), ua(x) = 1
2x1 +

√
x2. Then, there is a unique

monopoly equilibrium ẽ ∈ E(a) at which the slope of the indifference curve
of the monopolist is equal to the opposite of his marginal revenue, which, in
turn, is equal to the slope of the function which represents the offer curve
of the atomless part.

Proof. The unique monopoly equilibrium is the strategy ẽ such that ẽ12 =
1
4 , p̊(ẽ) = 1, x̃(t) = (1

4 ,
3
4), for each t ∈ T0, and x̃(a) = (3

4 ,
1
4). Moreover, we

have that x2 = h(x1) = −
√
x
1

2 + 1 and

−
∂ua(x̃(a)
∂xi

∂ua(x̃(a))
∂xj

= −
(
dp̊(ẽ)

deij
ẽij + p̊(ẽ)

)
= −1

2
=
dh(
∫
T0

x̃i(t) dµ)

dxi
.
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5 Conclusion

In this paper, we have introduced the mixed version of a monopolistic two-
commodity exchange economy and, in this framework, we have provided a
foundation of the monopoly solution by formalizing an explicit trading pro-
cess. We have first shown that, under the assumption that the aggregate
demand of the atomless part of the economy for the commodity held by
the monopolist is invertible, our monopoly solution coincides with that pro-
posed by Kats (1974). We have then shown that, if the aggregate demand
of the atomless part for the commodity held by the monopolist is invertible
and differentiable, our monopoly solution has the geometric characterization
proposed by Schydlowsky and Siamwalla (1966). We have provided an ex-
ample of this configuration. We leave for further research the analysis of the
existence and optimality properties of the concept of monopoly equilibrium
founded in this paper.

Kats (1974), in his final remarks (see p. 31), raised the question of the
relationship between monopoly equilibrium and cooperative game theory.
He formalized a monopolistic market game based on the notion of a mo-
nopolistic quasi-core and referred that to Shitovitz (1973) as the only other
contribution which had addressed a similar issue, using cooperative game
theory. Shitovitz (1973) actually showed, in his Example 1, that, in the
mixed version of a monopolistic two-commodity exchange economy, the set
of allocations in the core does not coincide with the set of Walrasian al-
locations. This example raised the question whether the core solution to
monopolistic market games is “advantageous” or “disadvantageous” for the
monopolist (see Aumann (1973), Drèze et al. (1977), Greenberg and Shi-
tovitz (1977), among others). The same issue could be analysed using our
monopoly equilibrium solution.

Sadanand (1988) studied the mixed version of a monopolistic two-com-
modity exchange economy, in a noncooperative framework, using strategic
market games à la Shapley and Shubik (see Giraud (2003) for a survey of
this literature). He first confirmed the negative result on the existence of
a Cournot-Nash equilibrium with trade for a monopolistic strategic market
game in a one-stage setting, already discussed by Okuno et al. (1980) (see p.
24). He then recognized the two stage-flavor of monopoly equilibrium, when
the monopolist is a price-maker. In a further step of our research, borrowing
from the analysis of oligopoly in mixed exchange economies developed by
Busetto et al. (2008), we propose to study a two-stage monopolistic strate-
gic market game where a quantity-setting monopolist moves first and the
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atomless part moves in the second stage, after observing the moves on the
monopolist in the first stage. This would provide a noncooperative founda-
tion of our monopoly equilibrium.
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