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A Test for the Detection of Scale Drift

Abstract

This paper proposes a statistical test for the detection of scale drift
base on item response theory methods. When the item parameters are
estimated separately for different forms of a test, they are expressed
on different measurement scales. It is possible to convert them to a
common metric using two constants, called equating coefficients. The
equating coefficients can be estimated for two forms with common
items, or derived through a chain of forms. When two forms can be
linked through more than one path, each of them yields a different
scale conversion. The proposal of this paper is a statistical test of
whether the scale conversions deriving from different paths are equal.
The approach is illustrated through a simulation study.
Index terms: equating, item response theory, linking, scale drift, scale
stability, Wald test.

Introduction

Many testing programs involve several administrations over time, and the
comparability of the scores is certainly an essential requirement. To this
end, the equating procedures (Kolen & Brennan, 2014) can be used to ad-
justs for differences in difficulty across different test forms. However, various
sources of variability can lead to scale drift (Haberman & Dorans, 2009),
and the scores on the forms can no longer be used interchangeably. The
sources of variability include both systematic and random error, and only
systematic error can induce scale drift (Haberman & Dorans, 2009). Sev-
eral contributions in the literature testify the importance attributed to the
detection of scale drift. Many works are based on the comparison of the
equated scores. Petersen et al. (1983) investigated the presence of scale drift
comparing the scores of the base form to the equated scores through a chain
of equatings. Puhan (2009) compared the equated scores deriving from two
parallel chains, and used the notion of difference that matters to define a
threshold beyond which to consider the differences not negligible. Liu et al.
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(2009) compared the original raw-to-scale conversion to a new conversion
obtained by readministration of an old form. Li et al. (2012) compared the
equated scores obtained through the same chain of forms with two different
equating procedures, called direct and indirect equating in the paper. Other
works considered the mean scale score. Haberman et al. (2009) analyzed the
effect of the year and the mouth on mean scale scores. Lee & von Davier
(2013) applied quality control techniques for time series data to mean scores.
Lee & Haberman (2013) proposed a regression analysis of mean test scores.

While approaches based on the equated scores have the drawback of tak-
ing in consideration many values, analyzing only the mean score involves a
loss of information. This paper proposes a novel approach, which builds on
the work of Battauz (2013). In particular, that paper introduced the chain
equating coefficients, which are two constants that can be used to convert the
item parameters from the scale of one form to the scale of another form linked
through a chain of forms. The chain equating coefficients are computed as a
function of the direct equating coefficients between two forms with common
items. A similar derivation can be found also in (Li et al., 2012). When
two forms can be linked through more than one path, each of them yields a
different scale conversion. The differences can be due to random variability
or systematic error. The proposal of this paper is a statistical test of whether
the scale conversions deriving from different paths are equal. The procedure
has the advantage of producing a single test statistic, without any loss of
information. The first step to compute the equated scores, both using the
true score equating or the observed score equating methods (Kolen & Bren-
nan, 2014), is the conversion of the item parameters to a common metric
using the equating coefficients. Hence, if there are no differences in the scale
conversions deriving from different paths, the equated score do not present
differences as well. Another advantage of the procedure is that it detects
only systematic error, taking into account the presence of random error in
the data. In the next section, the procedure will be described in detail. The
performance of the test will then be assessed through simulation studies. The
last section contains some concluding remarks.

A Test for Scale Drift

In a 3-parameter logistic (3PL) model, the probability of a correct response
to item j for a subject with ability θ is given by

pj(θ; aj, bj, cj) = cj + (1− cj)
exp {Daj(θ − bj)}

1 + exp {Daj(θ − bj)}
, (1)
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where aj, bj and cj are the discrimination, difficulty and guessing parameters.
The 2-parameter logistic (2PL) model is obtained when the guessing param-
eters cj are set to zero, while the 1-parameter logistic (1PL) model requires
also that the discrimination parameters are equal to 1. The item parame-
ters are generally estimated by means of the marginal maximum likelihood
method (Bock & Aitkin, 1981). Due to identifiability issues, the ability values
are assumed to have zero mean and variance equal to one. For this reason,
when the item parameters are estimated separately for different groups of
individuals, the item parameter estimates are expressed on different mea-
surement scales (Kolen & Brennan, 2014). In order to obtain comparable
values, it is necessary to convert the item parameter estimates to a common
metric by means of an IRT equating method (Kolen & Brennan, 2014). More
specifically, it is necessary to estimate the equating coefficients, which are two
constants used to perform the transformation of the item parameters. Let
Ag−1,g and Bg−1,g be the equating coefficients between Forms g − 1 and g.
The conversion of the item parameters from the scale of Form g − 1 to the
scale of Form g is given by the following equations:

ag =
ag−1
Ag−1,g

, bg = Ag−1,g bg−1 +Bg−1,g.

The methods proposed in the literature to estimate the equating coefficients,
as the mean-sigma (Marco, 1977), the mean-mean (Loyd & Hoover, 1980),
the mean-geometric mean (Mislevy & Bock, 1990), the Haebara (Haebara,
1980) and the Stocking-Lord (Stocking & Lord, 1983) methods, require some
items in common between the forms to be linked. When two test forms
can be linked through a chain of form, it is possible to compute the chain
equating coefficients (Battauz, 2013). Let p = {1, . . . , l} be the path from
Form 1 to Form l. The chain equating coefficients are given by

Ap =
l∏

g=2

Ag−1,g, Bp =
l∑

g=2

Bg−1,g Ag,...,l ,

where Ag,...,l =
∏l

h=g+1Ah−1, h is the coefficient that links Form g to Form
l, while Ag−1,g and Bg−1,g are the equating coefficients between Forms g − 1
and g.

When two forms are linked through more than one path, it is possible to
compare the different scale conversions deriving from each path to investigate
the presence of scale drift. If the IRT model holds perfectly and the true item
parameters are constant over different administrations, the equating coeffi-
cients deriving from different paths differ only because of sample variability.
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Thus, any difference which can not be attributed to this source of error in-
dicates a violation of the assumptions of the model. Suppose there are P
paths that link two forms, and let A1, . . . , AP and B1, . . . , BP the equating
coefficients related to these paths. These paths can possibly include a direct
link if the two forms present same common items. The proposal of this paper
is a statistical test with null hypothesis the lack of scale drift

H0 :

(
A1

B1

)
= · · · =

(
Ap

Bp

)
= · · · =

(
AP

BP

)
against the alternative hypothesis that at least one equality in H0 does not
hold. Let β = (A1, . . . , AP , B1, . . . , BP )> be the vector containing all the
equating coefficients, and β̂ be the estimate of β. The test statistic is given
by

W = (Cβ̂)>(CΣC>)−1Cβ̂,

where C is a block diagonal matrix composed of two blocks with dimension
(P − 1)× P both equal to a matrix given by (1P−1,−1 · I(P−1)×(P−1)), 1P−1
denotes a vector of ones with dimension P −1, I(P−1)×(P−1) denotes the iden-
tity matrix with dimension P −1, and Σ is the asymptotic covariance matrix
of β̂. Since the equating coefficients are a function of the item parameter
estimates, the delta method can be exploited to compute Σ

Σ =
∂β̂

∂α̂>
acov(α̂)

∂β̂
>

∂α̂
,

where α̂ is the vector containing the item parameter estimates of all the
forms, and acov(α̂) is the corresponding asymptotic covariance matrix. The
derivatives are given in Battauz (2013). The test proposed here is a Wald test,
and the asymptotic distribution of the test statistic under the null hypothesis
is a Chi-square distribution with 2 × (P − 1) degrees of freedom. In the
following section, the performance of the test will be investigated through
simulation studies.

Simulation Studies

In order to investigate the performance of the method, a simulation study
including various different scenarios was conducted. This study considers 11
forms, linked as shown in Figure 1. The numbers representing the forms
in the figure should be regarded purely as labels and not necessarily as a
sequence of time points. Forms 1 and 5 can be linked through 3 different
paths, each leading to a couple of different equating coefficients. Each form
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is composed of 30 items, and the number of items in common between forms
directly linked is 5.

Figure 1: The linkage plan.

The ability values were generated from a normal distribution with mean
and standard deviation varying across the forms. The mean was generated
from a uniform distribution with range [−0.5, 0.5], while the standard devi-
ation was generated from a uniform distribution with range [0.8, 1.2]. The
number examinees for each form is n = {500, 1000, 2000, 4000}. A 2PL model
was used to generate the item responses and to estimate the item parameters.
Following Battauz (2017), the difficulty parameters were generated from a
standard normal distribution, while the discrimination parameters were gen-
erated from a normal distribution with mean 0.9 and standard deviation 0.3,
truncated at 0.3 and 1.8. All analyses were performed using R (R Develop-
ment Core Team, 2017), using the package ltm (Rizopoulos, 2006) to fit the
IRT models, and the package equateIRT (Battauz, 2015a) to estimate direct
and chain equating coefficients. The Haebara method was used to estimate
direct equating coefficients between all forms with items in common.

In order to assess the type I error rate of the test, the first case considered
does not involve scale drift. The test was applied to the equating coefficients
that convert the item parameters of Form 5 to the scale of Form 1 deriving
from three or only two paths. Figure 2 shows the empirical type I error
rate of the test at different sample sizes. The nominal significance level
was chosen to be 0.05. The empirical significance level in some cases is
slightly lower than the nominal level, especially for small sample sizes. The
difference can be attributed to the fact the distribution of the test statistic
holds asymptotically, and also to small inaccuracies in the computation of
the covariance matrix of the item parameter estimates, which is based on
numerical computation of the hessian matrix.

In order to investigate the detection rate of the test (i.e. the power of the
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Figure 2: Empirical type I error rate (significance level set at 0.05).
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Table 1: Scale conversions from Form 5 to Form 1 obtained using the true
item parameters and the Haebara method.

equating coeffients
A B

no drift 1.186 -0.756
moderate drift 1.200 -1.168
severe drift 1.518 -1.615

test), some item parameters were manipulated on purpose in order to gen-
erate a drift of the scale in one of the paths that link Forms 1 and 5. More
specifically, the parameters of two items in Form 3 and two items in Form
4 were modified by adding a value of 0.4. Two cases were considered: only
difficulty parameters modified, and both difficulty and discrimination param-
eters modified. Table 1 reports the chain equating coefficients obtained using
the true item parameters and using the Haebara method for the estimation
of the direct equating coefficients. Hence, these values represent the scale
conversion without sample variability, so the differences are due only to scale
drift. In order to have a better understanding of the magnitude of the drift,
these equating coefficients were used to compute the equated scores. Since
the true score equating method and the observed score equating method
gave very similar results, here only the scores obtained with the latter are
shown. Figure 3 represents the difference of the equated scores using the
conversion with and without scale drift. When only the difficulty parameters
were manipulated, the maximum difference in the equated scores was 1.9,
while when both difficulty and discrimination parameters were manipulated
the maximum difference was 3.2. On the basis of these values, the two cases
were labeled as moderate and severe scale drift.
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Figure 3: Difference between equated scores using the conversion with and
without scale drift.
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Figure 4 shows the empirical power of the test. As expected, the power
increases with the sample size and it is higher when the magnitude of the
scale drift is larger. The values shown in the figure can serve as an indication
of the minimum sample size necessary to detect scale drift.

Conclusions

The proposals in the literature for the detection of scale drift focused on the
analysis of the equated scores. Following an IRT approach for test equating,
makes possible the comparison of the scale conversions. Hence, the com-
parison is synthesized in a single value, which is the test statistics. If the
scale conversion varies across the different paths, also the equated scores will
exhibit differences. However, comparing the scale conversions through a test
based on the equating coefficients is more convenient, as the drift is detected
at the origin. The procedure makes possible to compare more paths at one
time. These paths can include a direct link and can also be partially over-
lapping. It is well known that the random error increases with the length
of the chain (Battauz, 2015b). Hence, with longer chains, it is necessary a
larger sample size to ensure a high detection rate. The standard errors of
the equating coefficients, computed as explained in Battauz (2013) and im-
plemented in the R package equateIRT, can give an indication of the amount
of random variability. Treating the problem as a statistical test permits to
account for the random variability of the equating coefficients and to detect
only systematic differences in the scale conversion. When the sample size is
very large, the random variability is very limited and the test tends to reject
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Figure 4: Empirical power of the test.
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the null hypothesis even if the difference in the scale conversion is very small.
Thus, a comparison of the scores obtained using the different scale conver-
sions, as shown in Figure 3, is still informative with respect to the magnitude
of the drift.
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