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Abstract

Wald-type tests are a common procedure among the IRT-based methods for
DIF detection. However, the empirical type I error rate of these tests departs from
the significance level. In this paper, two reasons that explain this discrepancy will
be discussed and a new procedure will be proposed. The first reason is related to
the equating coefficients used to convert the item parameters to a common scale,
as they are treated as known constants whereas they are estimated. The second
reason is related to the parameterization used to estimate the item parameters,
which is different from the usual IRT parameterization. Since the item parameters
in the usual IRT parameterization are obtained in a second step, the corresponding
covariance matrix is approximated using the delta method. The proposal of this
article is to account for the estimation of the equating coefficients treating them
as random variables and to use the untransformed (i.e. not reparameterized)
item parameters in the computation of the test statistics. A simulation study is
presented to compare the performance of this new proposal with the currently
used procedure. Results show that the new proposal gives type I error rates closer
to the significance level.

1 Introduction

Differential Item Functioning (DIF) is a violation of the invariance assumption in Item
Response Theory (IRT) models and occurs when the probability of a positive response
for examinees at the same ability level varies in different groups. Various methods have
been proposed in the literature for the detection of DIF (see for example Magis et al.,
2010). Among them, the Lord’s chi-square test (Lord, 1980) is a common procedure that
presents the advantage of requiring the estimation of the item parameters just ones for
each group, as the selection of the anchor items is performed in a second step. The test
was originally developed for detecting DIF between two groups, and then extended to
the case of multiple groups by Kim et al. (1995). However, simulation studies reported
in the literature showed that the empirical type I error rates for this test departs from
the significance level (Kim et al., 1994). In particular, they are largely greater than
the significance level for the Three-Parameter Logistic (3PL) model, while they are
smaller for the Two-Parameter Logistic (2PL) model. In this paper, the reasons of this
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discrepancy will be discussed, and a new proposal will be presented. The new proposal
applies to multiple groups as well as to two groups.

Two alternative procedures can be found in Woods et al. (2013). The Wald-1 pro-
cedure relies on simultaneous estimation of item parameters, constraining the anchor
items to have equal values across the groups. Instead, in the Wald-2 procedure the item
parameters are estimated separately in different groups, fixing the mean and standard
deviation of the abilities in the focus groups to the values previously estimated from
concurrent calibration. While the type I error is extremely inflated for Wald-2, Wald-1
performs very well in simulations. However, this procedure requires the selection of
the anchor items a priori, and the results may be affected by the presence of DIF in
anchor items (Candell and Drasgow, 1988). Instead, the procedure presented in this
paper keeps separate the estimation of item parameters from the computation of the
test statistics, thus allowing to select the set of anchor items in a second iterative step,
on the basis of the classification of the items as DIF.

This paper is structured as follows. Section 2 reviews the traditional Lord’s Chi-
Square test and its extension to multiple groups. Section 3 illustrates the new proposal,
which is compared to the traditional procedure by means of simulation studies in Section
4. Finally, Section 5 contains some concluding remarks.

2 Review of Wald tests for DIF

In a 3PL model, the probability of a correct response to item j for a subject with ability
θ is given by

pj(θ; aj, bj, cj) = cj + (1− cj)
exp {Daj(θ − bj)}

1 + exp {Daj(θ − bj)}
, (1)

where aj, bj and cj are the discrimination, difficulty and guessing parameters. The 2PL
model is obtained when the guessing parameters cj are set to zero, while the Rasch model
requires also that the discrimination parameters are equal to 1. The item parameters
are generally estimated by means of the marginal maximum likelihood method (Bock
and Aitkin, 1981).

Let vjk = (ajk, bjk, cjk)
> be the vector of item parameters for group k. The Lord’s

Chi-square test was originally formulated for the case of two groups under investigation.
The null hypothesis is the invariance of item parameters across groups

H0 :

aj1bj1
cj1

 =

aj2bj2
cj2

 .

Without loss of generality, throughout this paper it is assumed that the reference group
is group 1.

When the item parameters are estimated separately for the two groups, item pa-
rameter estimates are expressed on different measurement scales due to identifiability
issues. Before comparing item parameter estimates deriving from different groups, it
is then necessary to transform them in order to obtain values expressed on the same
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metric. The equating transformations that permit to transform the item parameters
estimates from the scale of group k to the scale of the reference group are

â∗jk =
âjk
Ak

, (2)

and
b̂∗jk = Ak b̂jk +Bk, (3)

where Ak and Bk are two constants called equating coefficients (Kolen and Brennan,
2014). The guessing parameters cj do not need to be transformed. The test statistics is

χ2
j = (vj1 − v∗j2)>(Σj1 + Σ∗j2)

−1(vj1 − v∗j2), (4)

where the vector of estimates of the parameters of item j in group k is

vjk = (âjk, b̂jk, ĉjk)
>,

the vector of estimates transformed to the scale of the reference group is

v∗jk = (â∗jk, b̂
∗
jk, ĉjk)

>,

Σjk is the estimated covariance matrix of vjk and Σ∗jk is the estimated covariance matrix
of v∗jk.

Kim et al. (1995) extended the test to the case of multiple groups, considering as
null hypothesis

H0 :

aj1bj1
cj1

 = · · · =

ajkbjk
cjk

 = · · · =

ajKbjK
cjK

 (5)

and as test statistics
Qj = (Cvj)

>(CΣjC
>)−1(Cvj), (6)

where
vj = (v>j1, v

∗
j2
>, . . . , v∗jK

>)>,

Σj = COV(vj) = blockdiag(Σj1,Σ
∗
j2, . . . ,Σ

∗
jK),

blockdiag(·) denotes a block diagonal matrix and C is a contrast matrix. When K = 2,
Equation (6) returns the test statistics (4). Under the null hypothesis, the asymptotic
distribution of the test statistics is a Chi-square distribution with degrees of freedom
equal to the number of rows of the matrix C.

3 A new proposal

Simulation studies reported in the literature (Kim et al., 1994) showed that the empirical
type I error rate for this test diverges from the significance level. In particular, it is
largely greater for the 3PL model, while it is smaller for the 2PL model.

The proposal of this paper aims at narrowing the discrepancy between the empirical
type I error rate and the nominal value. Two issues will be considered to this end.
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First, the equating coefficients in Equation (2) and (3) are treated as known constants
in the computation of Σ∗jk, while they are actually estimated (see for example Kim et al.,
1994, 1995). The literature on test equating provides various methods for the estimation
of the equating coefficients (Kolen and Brennan, 2014), while the asymptotic standard
errors are derived in Ogasawara (2000) and Ogasawara (2001). The proposal of this
paper is to account for the estimation of the equating coefficients in the computation of
the covariance matrix of the item parameters.

A second issue regards the parameterization usually used for the estimation of the
item parameters, which is

pj(θ; γj, β1j, β2j) = cj + (1− cj)
exp(β1j + β2jθ)

1 + exp(β1j + β2jθ)
, (7)

with

cj =
exp(γj)

1 + exp(γj)
. (8)

The set of parameters estimated for each item is then {γj, β1j, β2j}, while the parameters
of the usual IRT parameterization given in (1) are obtained using these transformations:

aj =
β2j
D

(9)

bj = −β1j
β2j

(10)

and Equation (8). The covariance matrices Σjk are obtained by applying the delta
method.

Of course, the item parameter estimates need to be converted to a common metric.
This can be performed using the following equations:

β̂∗2jk =
β̂2jk

Âk
, (11)

and

β̂∗1jk = β̂1jk − β̂2jk
B̂k

Âk
. (12)

The derivation is given in Appendix A.
The proposal of this paper is to compute the test statistics using untransformed item

parameter estimates. The null hypothesis is then

H0 :

 γj1
β1j1
β2j1

 = · · · =

 γjk
β1jk
β2jk

 = · · · =

 γjK
β1jK
β2jK

 , (13)

which is equivalent to (5). The test statistics is given by

Wj = (Cνj)
>(CΩjC

>)−1(Cνj), (14)
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where
νj = (ν>j1, ν

∗
j2
>, . . . , ν∗jK

>)>,

νjk = (γ̂jk, β̂1jk, β̂2jk)
>, ν∗jk = (γ̂jk, β̂

∗
1jk, β̂

∗
2jk)

>,

Ωj = COV(νj)

and C is a contrast matrix. It is important to note that, accounting for the estimation
of the equating coefficients, not only the covariance matrix of ν∗jk needs to be property
calculated, but also the covariance matrices between νj1 and ν∗jk are not zero. This is
because the equating coefficients are estimated using the item parameter estimates ob-
tained from group 1 and group k. For more details on the computation of the covariance
matrix Ωj, see Appendix B.

4 Simulation studies

The performance of the new proposal was assessed by means of simulation studies. Var-
ious settings were considered. The IRT models used to generate the data and estimate
the item parameters are the 2PL and the 3PL models. The sample size for each group
takes values n = {500, 1000, 2000, 4000}, while the number of items of the test is 20
and 40. Test responses of 3 groups were simulated. For each group the θ values were
generated from a normal distribution with mean {0, 0.5,−0.5} and standard deviation
{1, 1.2, 0.8} in the 3 groups. The discrimination parameters were generated from a uni-
form distribution with range [0.7, 1.3]; the difficulty parameters were generated from a
standard normal distribution and the guessing parameters were taken equal to 0.2. The
percentage of DIF items was 0%, 5% and 20%. In presence of DIF, the values added to
the item parameters in the two focus groups were 0.3 and 0.5 for the discrimination pa-
rameters, and 0.4 and 0.6 for the difficulty parameters. For each setting, 1000 simulated
data sets were generated. The test was applied to 2 and 3 groups (the third group was
excluded when just 2 groups were considered). The traditional test was also performed
for comparison. The purification procedure (Candell and Drasgow, 1988) was applied in
presence of DIF items. The new and the traditional procedures were implemented in R
(R Development Core Team, 2016), employing the equateIRT package (Battauz, 2015)
for the computation of the equating coefficients (see the program code in the Supple-
mentary Material supplied with the online version of this paper). The R package ltm

was used to estimate the IRT models (Rizopoulos, 2006).
The data sets simulated without DIF items are used to evaluate the type I error rates.

The empirical type I error rates are reported in Table 1, while Figures 1 and 2 give a
graphical representation for the 2PL and the 3PL models respectively. Consistently
with previous studies, using the traditional procedure, the type I error rate is lower
than the significance level for the 2PL model and larger for the 3PL model. The new
procedure provides instead values much closer to the nominal level under all the settings
considered. There are only a couple of exceptions for the 3PL model with 40 items and 2
groups, where the traditional procedure performed better. However, under this setting,
the new procedure still performs better for smaller sample sizes and the departure from
the nominal level is anyway small for larger sample sizes.
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Figure 1: Type I error rates (false positive rate) for the 2PL model.
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Figure 2: Type I error rates (false positive rate) for the 3PL model.
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Table 1: Type I error rate (false positive rate).
2 groups 3 groups

model test length n new traditional new traditional
2PL 20 500 0.043 0.021 0.039 0.023
2PL 20 1000 0.045 0.021 0.040 0.022
2PL 20 2000 0.049 0.023 0.044 0.023
2PL 20 4000 0.049 0.025 0.042 0.022
2PL 40 500 0.047 0.025 0.040 0.024
2PL 40 1000 0.049 0.027 0.042 0.024
2PL 40 2000 0.050 0.027 0.044 0.024
2PL 40 4000 0.049 0.025 0.043 0.023
3PL 20 500 0.012 0.168 0.061 0.405
3PL 20 1000 0.026 0.112 0.088 0.260
3PL 20 2000 0.031 0.092 0.089 0.197
3PL 20 4000 0.036 0.081 0.076 0.160
3PL 40 500 0.020 0.121 0.074 0.274
3PL 40 1000 0.028 0.078 0.082 0.167
3PL 40 2000 0.035 0.062 0.075 0.111
3PL 40 4000 0.038 0.054 0.068 0.087

When test responses are simulated in presence of DIF, it is also possible to evaluate
the power of the test. Figures 3 and 4 represent the empirical power of the tests with
a percentage of 5% of DIF items. Figure 3 shows that for the 2PL model the power
is substantially equal to 1 under all the settings for both the procedures. For the 3PL
model (Figure 4), the power of the traditional procedure is higher for smaller sample
sizes, and it tends to 1 as the sample size increases for both the procedures. However,
it should be noted that a comparison is not appropriate since the type I error rates are
not equal for the two procedures, and a greater power should be expected from a test
that tends to reject the null hypothesis too often.

Results for the case of a percentage of DIF items equal to 20% are not shown because
very similar to the case of a percentage of 5%.
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Figure 3: Power (true positive rate) for the 2PL model (percentage of DIF items: 5%.).
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Figure 4: Power (true positive rate) for the 3PL model (percentage of DIF items: 5%.).
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5 Discussion

In this article a new procedure to perform Wald-type tests for DIF detection is presented.
The new procedure recognizes two basic aspects. One is the random nature of the
estimated equating coefficients, which should be taken into account for an accurate
computation of the covariance matrix. Another issue is the non-invariance to a non-
linear reparametrization of the Wald test, (Gregory and Veall, 1985). Thus, not applying
any unnecessary reparameterization to the item parameters estimated with the marginal
maximum likelihood method is certainly preferable. The simulation studies presented
in this paper showed that the new proposal outperforms the traditional procedure. The
results are better for the 2PL model than the 3PL model, and a sensible explanation
for this difference can found in the difficulties of maximum likelihood fitting algorithms
for the 3PL model (Patz and Junker, 1999).

Appendix A: Equating of untransformed item param-

eters

Equation (11) is obtained from Equations (2) and (9) as follows:

β̂∗2jk = Dâ∗jk =
Dâjk

Âk
=
β̂2jk

Âk
. (A1)

Equations (2), (3) and (10) lead to Equation (12):

β̂∗1jk = −Dâ∗jkb̂∗jk = −Dâjk
Âk

(Âk b̂jk + B̂k) = −Dâjkb̂jk−Dâjk
B̂k

Âk
= β̂1jk− β̂2jk

B̂k

Âk
. (A2)

Appendix B: Covariance matrix of item parameters

The covariance matrix Ωj entering in Equation (14) is a block matrix given by

Ωj =


COV(νj1) COV(νj1, ν

∗
j2) COV(νj1, ν

∗
j3) . . . COV(νj1, ν

∗
jK)

COV(ν∗j2, νj1) COV(ν∗j2) 0 . . . 0
COV(ν∗j3, νj1) 0 COV(ν∗j3) . . . 0

...
...

...
. . .

...
COV(ν∗jK , νj1) 0 0 . . . COV(ν∗jK)

 .
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Let Ωjk denote COV(νjk), which is obtained from the estimation of the item parameters.
Using the delta method, it is possible to find the covariance matrix

COV((ν>j1, ν
∗
jk
>)>) =

∂(ν>j1, ν
∗
jk
>)>

∂(ν>j1, ν
>
jk)

COV((ν>j1, ν
>
jk)
>)
∂(ν>j1, ν

∗
jk
>)

∂(ν>j1, ν
>
jk)
>

=

 ∂νj1
∂ν>j1

∂νj1
∂ν>jk

∂ν∗jk
∂ν>j1

∂ν∗jk
∂ν>jk

(Ωj1 0
0 Ωj2

) ∂ν>j1
∂νj1

∂ν∗jk
>

∂νj1
∂ν>j1
∂νjk

∂ν∗jk
>

∂νjk


=

 Ωj1 Ωj1
∂ν∗jk

>

∂νj1
∂ν∗jk
∂ν>j1

Ωj1
∂ν∗jk
∂ν>j1

Ωj1
∂ν∗jk

>

∂νj1
+

∂ν∗jk
∂ν>jk

Ωj2
∂ν∗jk

>

∂νjk
,


since

∂νj1
∂ν>j1

is the identity matrix and
∂νj1
∂ν>jk

= 0. The blocks on the main diagonal of Ωj

are then

COV(ν∗jk) =
∂ν∗jk
∂ν>j1

Ωj1

∂ν∗jk
>

∂νj1
+
∂ν∗jk
∂ν>jk

Ωj2

∂ν∗jk
>

∂νjk
,

while the non-zero matrices outside the main diagonal are given by

COV(νj1, ν
∗
jk) = Ωj1

∂ν∗jk
>

∂νj1
.

The chain rule can be exploited to find the derivatives

∂ν∗jk
∂(ν>j1, ν

>
jk)

=
∂ν∗jk

∂(ν>jk, Âk, B̂k)

∂(ν>jk, Âk, B̂k)
>

∂(ν>j1, ν
>
jk)

, (B1)

where
∂(Âk, B̂k)

>

∂(ν>j1, ν
>
jk)

=
∂(Âk, B̂k)

>

∂(v>j1, v
>
jk)

∂(v>j1, v
>
jk)
>

∂(ν>j1, ν
>
jk)

. (B2)

The non-zero derivatives entering in (B1) and (B2) are given in the following (derivatives
of a variable with respect to itself are not shown):

∂β̂∗1jk

∂β̂1jk
= 1,

∂β̂∗1jk

∂β̂2jk
= −B̂k

Âk
,

∂β̂∗1jk

∂Âk
= β̂2jk

B̂k

Â2
k

,

∂β̂∗1jk

∂B̂k

=
β̂2jk

Âk
,

∂β̂∗2jk

∂β̂2jk
=

1

Âk
,

∂β̂∗2jk

∂Âk
= − β̂2jk

Â2
k

∂âjk

∂β̂2jk
=

1

D
,

∂b̂jk

∂β̂1jk
= − 1

β̂2j1
,

∂b̂jk

∂β̂2jk
=
β̂1jk

β̂2
2jk

.

The derivatives ∂(Âk,B̂k)
>

∂(v>j1,v
>
j2)

are given in Ogasawara (2000) and Ogasawara (2001).
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