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Abstract

Evidence of spatial autocorrelation in health data has been confirmed in a set of

well-known studies. This paper aims at investigating the determinants of individual

health care expenditures in the Region of Friuli-Venezia Giulia. This phenomenon

is examined by considering a cross-sectional individual expenditure dataset ex-

hibiting a hierarchical structure, due to the fact that patients are nested in their

general practitioners (GPs). Individual expenditures regarding drug prescriptions,

inpatient care and outpatient care are observed in a dataset from 2010. The model

specification considers expenditures as a function of patient characteristics (age,

gender and the presence of co-morbidities), contextual variables (population size

of the municipality and the administrative area of residence) and characteristics

of general practitioners (age, experience and type of physician). The behaviour of

macro-units (general practitioners) is studied by introducing a random error term

in the model specification. Finally, spatial correlation is included in the model.

Given the size of the dataset (around 1 million patients), a feasible way to model

spatial correlation is to introduce a deterministic term (the neighbourhood average

expenditure measure). Moreover, the model must also take into account the typi-

cal zero inflation issue. To this end, a feasible two-stage Heckit method is adopted

to introduce both the spatial component and the specific hierarchical structure of

data in the sample selection model. Results showed that the spatial component

presents a significant effect in both the selection and the level equations. Different

weighting systems have been considered, but the model point estimates are not

significantly affected by the definition of the neighbourhood. From the decision-

maker’s point of view, this analysis is useful to highlight the statistical significance

of macro and micro-economic determinants of health care expenditures. Moreover,

by analysing the three kinds of health care services separately, it is possible to

focus on the determinants of each single health care expenditure.
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1 Introduction

During the last decades, the relevance of health care expenditure (HCE here-

after) has substantially increased, leading, where health care is public, to growing

pressure on public budgets and to sustainability problems. For these reasons, mon-

itoring the trends in health care expenditures and the analysis of HCE growth and

health care demand drivers are fields of very active research (Horizon 2020 ). Even

if per-capita health expenditures show increasing trends in the OECD, there is

evidence of substantial heterogeneity of level of spending as a proportion of GDP

across the countries as stated in Baltagi and Moscone (2010). Literature on these

research interests has followed manifold directions, dealing with the study of de-

mand (use) of health care services or with the analysis of HCE itself, both at the

macro and micro levels. In the former case, factors affecting the probability of use

and/or the amount of expenditure at the individual level has usually been evalu-

ated (see Angulo et al., 2011; Albouy et al., 2010). In the latter case, determinants

of health expenditure rise have been explored at the aggregate (Lopez-Casasnovas

et al., 2005) or micro level, both pointing out the relevance of income, age, edu-

cation and health status. Moreover, since the seminal paper by Newhouse (1992),

the determinants assessment has been a matter of extensive policy debates and the

availability of macro and microdata on health care has driven studies on the effects

of different factors, such as income (see Gerdtham and Jönsson, 2000; Baltagi and

Moscone, 2010), prices, aging (see Werblow et al., 2007), time, new health care

profiles and technological progress.

Several studies focused on macrodata analysis and cross-country frameworks to

identify the determinants of HCE (see, for instance, Gerdtham et al., 1992; Baltagi

and Moscone, 2010), considering the effects of gross domestic product, demographic

structure and institutional factors. Other macrodata studies have focused on sin-

gle countries, comparing jurisdictions or regions (see Giannoni and Hitiris, 2002;

Di Matteo and Di Matteo, 1998) to disentangle heterogeneity. However, spatial

spillovers are not often examined, even if the potential impact of decentralization

designs have led to the examinations of spatial patterns of health expenditures,

introducing spatial econometric models in the health care analysis (see Moscone

and Knapp, 2005; Rosenberger et al., 2005; Costa-Font and Pons-Novell, 2007).

Aggregate data on HCE have also been considered to disentangle income effects in

a long-run framework and income elasticity, using panel data from OECD countries

(Baltagi and Moscone, 2010) and the US (Freeman, 2003), and then analyzing the

stationarity and cointegration aspects. On the other side, the growing availability

of administrative databases and the presence of even more efficient information

systems have enabled easier development of micro-economic studies in this field of
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analysis (e.g. Deb et al., 2006).

There are the two main streams in the literature relative to the health eco-

nomics studies on HCE microdata. Individual data are often collected to study

the effect of patient social-economic characteristics, together with pathology, illness

severity and general health status on personal health expenditures or demand (as

in Wong et al., 2011). Typically these studies regard specific pathologies and are

developed in controlled experiment frameworks (e.g. Madden, 2008). Sometimes,

individual data are analysed at the level of area to evaluate spatial heterogene-

ity in health care needs and demands (as in Wang, 2009). This study can be

considered an intermediate case of the previous two. The aim of this work is to

develop an empirical analysis on the evaluation of HCE determinants to address

the evidence-based decision making process and policy. Disaggregated data enables

us to disentangle the extent to which sociodemographic variables, heterogeneity of

health care inputs and health status proxies explain spatial differences in health

care expenditures. Our dataset was collected by considering the administrative

health databases on the resident population of the italian region of Friuli-Venezia

Giulia (FVG). Information on about 1 million regional patients was collected. This

population is also grouped by the 219 regional municipalities and the 1,092 general

practitioners (GPs hereafter). The analysis of individual expenditures has been

also widely treated in the econometric literature, where, for instance, Two-Part

model, sample selection and latent class models have been adopted to study mi-

crodata with dependent variables presenting an excess of zeros (see, for instance,

Buntin and Zaslavsky, 2004; Madden, 2008; Deb and Trivedi, 2002, respectively,

for the three approaches). All these alternatives define individual expenditures as

the combination of two stochastic processes (one for the presence of expenditure

and another for the amount of the positive health care costs). Mixture models,

where data are considered a combination of a zero mass distribution and the com-

mon cost function, have also played a relevant role in this sort of analysis with

individual expenditures (as explained in Deb and Trivedi, 1997). Finally, copula

bivariate probit models (Winkelmann, 2012) represent another recent modeling

strategy adopted to analyse HCE patterns. To take into account of the complex

hierarchical data structure and due to the computational issues connected with

the huge dataset size, we, finally, decided to adopt the Heckman sample selection

approach.

Due to the potential spillovers at the municipality level and the geographical

heterogeneity of unobservable risk factors, the model estimated here takes into con-

sideration a spatial approach. However, given the hierarchical structure of the our

dataset, a feasible way to introduce the spatial integration could take into account

a modified version of the neighborhood effect defined by Moscone et al. (2007b) and

Costa-Font and Moscone (2008). Alternatively spatial correlation could be included

in our model specification by means of a spatial autoregressive (SAR) error term;

however, this would lead to a complex error correlation structure (the variance-
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covariance matrix is a full and sparse matrix) when dealing with disaggregated

hierarchical structure. Furthermore, the idea to adopt the SAR specification only

for the municipalities error term appears unfeasible under a likelihood approach,

but estimation of SAR models could be accomplished by adopting a Bayesian

approach (as in Eibich and Ziebarth, 2013). In all these approaches, the model

estimation results would be affected by the choice of the spatial weights matrix. In

our empirical approach, we tested two different paradigms: the geographical dis-

tances considering, for instance, contiguity of order 1, euclidean or Cliff and Ord

distances (Cliff and Ord, 1981), and the economic distances (e.g. Case et al., 1993;

Boarnet, 1998) applied to health care data. Individual HCE comprises different

types of required hearth care services: inpatient hospitalizations, outpatient care

services, home care services, drug prescriptions, emergency care services and so on.

Since these different sources are strictly connected, a multivariate model should be

considered. Our economic evaluation of individual HCE is focused on the counter-

part related to drug prescription, inpatient care and outpatient care services only.

This limitation is due to the availability and the reliability of the administrative

data collected in the regional health databases. However, these three expenditures

sources cover the greatest part of the National and Regional Health System bud-

gets, and they present quite relevant heterogeneity at the individual and spatial

levels. We will describe their distributional characteristics in detail in Section 4.

Examined data on individual expenditures refer to year 2010 and have been de-

rived by the integrated regional data-warehouse. Other information on resident

population patients and on general practitioners have been derived from personal

data registries. Moreover, patients’ health condition has been proxied by the in-

formation registered in the outpatient care, inpatient care, drug prescription and

other health services (for instance, home care and emergency services) datasets.

The paper is organised as follows. Section 2 summarises some recent empirical

evidence on the determinants of health expenditures and the subsequent public

policies. Section 2.1 is devoted to empirical model specification. Section 3 presents

the data with particular attention to data structure and sources. Section 4 collects

the results of the model estimation. Concluding remarks and future developments

for research are given in Section 6.

2 The analysis of the HCE

As just introduced the econometric analysis of the determinants of HCE can be

addressed considering both individual and aggregated data sources. On one hand,

individual data studies concerning the effects of socio-economic and health factors

on health expenditure can be classified as quasi-experimental studies, epidemiolog-

ical studies and observational studies regarding the analysis of the determinants of

individual expenditures. On the other hand, analyses of aggregate data are adopted

to study macro-variations in health needs or demand and to develop macro-area
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studies. By exploring the determinants of health expenditure at the macro-level,

Wang (2009) and Baltagi and Moscone (2010) assessed that gross state products,

proportion of people over 65 years in the population, level of urbanisation and de-

privation, along with the number of hospital beds, have significant effects on health

expenditures. At the micro-level, the analyses in Getzen (2000), Madden (2008)

and Deb et al. (2006) identify age, gender, health status, income and educational

levels as determinants of individual health care demand. In our study, some vari-

ables are collected at the individual level: age class; sex; health-related exemptions

and the presence of other health costs (considered as proxies of co-morbidities).

All these variables are designed to allow for individual heterogeneity. The model

specification is then completed by introducing the characteristics of grouping fac-

tors, the GPs (age class, experience – time from graduation and GP classification

– paediatric or not) and the municipalities (i.e. population size and the presence

of hospitals).

Statistical tools for spatial analyses have been thoroughly applied to health data

in the analysis of the prevalence or incidence of diseases and their related costs (see

Moscone, 2011; Moscone et al., 2007a), in the examination of potential expendi-

ture spillovers across the geographical area of a country (as in Costa-Font and

Pons-Novell, 2007) or across countries in an international HCE comparison (as in

Baltagi and Moscone, 2010). However, studies on individual health data explored

in relation to HCE with the inclusion of a spatial correlation structure are rare in

the health economics literature. One of the major assumptions in spatial models is

that an individual’s behaviour is affected by the characteristics and behaviours of

the people in the neighbourhood. In particular, the interactions among individuals

may lead to a collective behaviour, which empirically represents a spatial correla-

tion pattern. The determinants of this spatial correlation were stated in Moscone

et al. (2007a), where mental-health expenditure analysis was carried out at the

local authority level and a set of determinants of the Local Authority’s behaviour

were identified. The performance of a productive unit may affect its neighbours’

behaviours and, consequently, its expenditure patterns. This effect, called the

“demonstrative effect”, justifies the introduction of the deterministic component

in the spatial autocorrelation structure of the specified model. The definition of

the contextual effect is based on the idea that adjacent “productive units” share

common observable characteristics. For this reason, the proposed model considers

some variables at the aggregate level. The spatial term included aims at explain-

ing the outcome of common exogenous environmental conditions (such as authority

policies) on HCE. Finally, the correlated effects are designed to collect the unob-

served determinants of interdependence. The cited results can be adapted to a

general health expenditures framework and most of the stated hypotheses on the

local authorities’ behaviours are also relevant for GPs. This study aims to test for

the presence of a spatial correlation component and to eventually consider it in the

cost prediction function. In particular, the model considers the hypothesis of si-
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multaneous determination of local and neighbouring expenditures as in Brueckner

(2003) or Anselin (2002). However, the application of this kind of specification to

disaggregated data is not straightforward. The distance between individuals is not

directly available and its potential use involves an infeasible model specification.

However, the adoption of spatial correlation at the municipality level seems to be

more suitable. The weighted sum of neighbouring effects can be defined by consid-

ering the average per-capita expenditures in each municipality, by assuming that

individual expenditures are affected by the general neighbourhood behaviour. This

allows us to specify the models by means of a feasible weighting system (about 1

million individuals are nested in 219 municipalities only).

To proceed with the analysis, we must face another two common issues in

microeconomic-data analysis: zero-inflation and multilevel data structure (com-

plex heterogeneity). As introduced previously, some alternative approaches have

been developed in the econometric literature to deal with the former problem. To

feasibly solve the computational problems due to large data size, we decided to

adopt the sample selection model paradigm and to face the estimation issues by

means of the Heckit correction in the two-step procedure (Heckman, 1979). These

choices allowed us to include the administrative health macro-areas (AHA here-

after) dummies in the model. Their effects, in fact, were collinear to the GPs’ ones

in a fixed-effect framework. In order to evaluate the impact of alternative estima-

tion procedures, considering a reduced model specification, we compared: two-step

random and fixed-effect, maximum likelihood and copula based strategies.

The peculiar hierarchical structure of the data allowed us to consider two dis-

tinct non-nested levels of data aggregation: GPs and municipalities respectively. In

the empirical application, the two grouping factors can be considered by adopting a

two-level random-effects model with independent cross-classified effects. Random-

effect probit and linear models were adopted in the development of the two-step

estimation procedure.

2.1 A spatial HCE function specification

The HCE model specification can be accomplished by considering some subse-

quent steps. First, it is possible to define the hierarchical spatial model considering

the cross-classified random intercept model specification

yij,m = β0j,m + β′xij,m + εij,m, (1)

where i, j and m identify individuals, municipalities and GPs, respectively; β0j,m

can be defined as the sum of the general intercept β0 and two independently dis-

tributed cross-classified random terms capturing the heterogeneity effects of munic-

ipalities and GPs respectively. The deterministic term β′Xij,m captures the effects

of covariates mentioned in the previous section, which are observed variables mea-

sured at the different levels of the hierarchical structure.
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The municipalities’ roles in the HCE distribution can also be formalised by

considering the spatial correlation between municipalities; in this case, we can

introduce a deterministic model component, as in Moscone et al. (2007a) and

Costa-Font and Moscone (2008). However, its specification is non-standard in

the microdata context; therefore, we decided to introduce a modification of the

standard deterministic component defined as

γ

K∑
k=1

wkj ȳk, (2)

where the weighting system wkj is defined at the municipality level. Different

weighting systems can be adopted to describe the neighbourhood municipality

effect (see Zaccomer and Mason, 2011, for a full discussion on economic neigh-

bourhood specification). The deterministic term defined in equation (2) elicitates

the interaction between the units in the expenditure process, whereas the remain-

der of the formula represents the common linear effect of the covariates. Since

the weighting system identifies the strength of the interactions between territorial

units, we decided to test some alternative metrics, whose results were compared

by means of a sensitivity analysis. First, the geographical distance paradigm was

considered by obtaining the contiguity matrices (of a different order with rook or

queen configurations) and the Cliff and Ord distances (also in their truncated ver-

sions). Moreover, by adopting the economic distance paradigm, we could define the

Case and Boarnet distances. The knowledge of a spatial clustering system, such as

that defined by local health authorities, allowed us to further define the concept of

quasi-neighbourhood (as in Zaccomer and Mason, 2011). All distances were calcu-

lated by considering the municipalities as reference territorial units. Conditioned

on the availability of GIS data concerning the municipalities, the distances between

territorial units could be calculated. The paradigm of the economic distance be-

tween spatial units (municipalities in our example) was adapted to the health care

framework. The construction of the distance functions was based on some possible

general health-status proxies; in particular, instead of the typical economic mea-

sures, population size or percentage of individuals with at least one exception were

considered in the Boarnet or Case formulations. The mean ȳk = 1
Nk

∑Nk

i=1 yik repre-

sents the municipality per-capita expenditure. It is easy to note that the adoption

of this aggregated solution is equivalent to the choice of an individual weighting

system in which the distances between municipalities are applied by standardizing

the weighting system with the sizes of the populations (Nk). When introducing the

spatial correlation in the model specification, the municipality error term can be

dropped because the two effects are partially overlapping. For this reason, we will

consider the simple random intercept model in the following model specification.

The model is defined by combining equations 1 and 2, which does not yet allow

for the presence of a large number of zero expenditures. Therefore, the sample
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selection model paradigm (as in Leung and Yu, 1996; Madden, 2008) is considered

with the specification

yij,m =

{
β0j,m + γ

∑K
k=1 wkj ȳk + βxij,m + εij,m for yd = 1

0 for yd = 0,
(3)

where the process yd can be defined by considering a generalised linear mixed

model, where the explicative variables may differ from those included in the model

for the levels of expenditures. The Heckit method may be adopted to check for

selection bias.

Models for the selection and the amount of individual expenditures may in-

clude the spatial term; in fact, the two spatial components can be defined at the

municipality level by considering, respectively,

• the weighted average of neighbourhood percentages of positive expenditures

and;

• the weighted average of neighbourhood per-capita expenditures (calculated

on the positive expenditures only).

We decided to study the multivariate HCE phenomenon by estimating sepa-

rated models for each single type of expenditure including the correlations between

them using of a set of dummy variables.

Even in this simplified context, the estimation process presented some esti-

mation issues due to the size of the population dataset and, for this reason, the

adopted estimation algorithm was characterised by the following steps.

Step 1 Estimation of the generalised mixed (probit) model for the presence of a

positive expenditure.

Step 2 Consideration of Heckman’s correction in the specification of a linear mixed

model for the positive expenditure sub-dataset. The exclusion restriction is

respected by considering a different set of variables for the two steps of the

estimation.

We used Stata (StataCorp, 2009) to obtain the estimates of the final mod-

els (xtprobit}, xtreg}, heckman} and heckmancopula} commands were con-

sidered). In particular, we estimated the copula sample selection model using the

Stata program heckmancopula} developed by Hasebe (2013). Preliminary analyses

have been developed in R (R Core Team, 2013).

3 The data

The dataset includes information on about 1 million individuals clustered in

1,092 GPs and 219 municipalities. Following the record linkages and the post-

editing processes, 999,488 individuals were included in the study. The database
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was extracted from the fully developed administrative regional health informative

system (SISSR). The considered archives of SISSR belong to the following distinct

systems: territorial (SIASI and SIES), hospital (PS NET, G2, NET LAB and so

on), drug prescription and ambulatory (SIASA) informative systems. Such archives

collect huge amounts of data on both pathologies and health care profiles. The HCE

for drug prescription, outpatient and inpatient care and other health services were

also registered here. Together with this information, data on the socio-demographic

characteristics of all the resident patients were available, thanks to the population

regional registry.

The first step in the data analysis dealt with the description of the phenomenon

of interest. First, we observe a large proportion of null HCEs, and summary

statistics reported in Table 1 show the relationship between the percentage of

null expenditures and some explicative variables. Evidence suggests to treat this

problem by considering a specific prediction model for excess of zero expenditures.

A similar analysis was developed to investigate this issue at the municipality and

GP levels, pointing out a relatively stable pattern with respect to these factors.

The descriptive analysis of positive expenditures is reported in Table 2. These

summary statistics can be used to mark the relevance of individual, GP and mu-

nicipality characteristics on HCE heterogeneity.

[Table 1 about here.]

[Table 2 about here.]

As mentioned previously, the spatial structure of the dataset is linked to in-

dividuals’ residences. In particular, we considered municipalities as spatial units.

Plots in Figure 1 show the territorial distribution of the multivariate phenomenon

under examination. This descriptive analysis does not exhibit spatial patterns in

the HCEs. Nevertheless, the spatial components seem to be significant in the model

estimation.

[Figure 1 about here.]

4 The estimation results of the spatial HCE mod-

els

As stated in Section 2.1, the estimation procedure was carried out separately for

each source of HCE. As just introduced, a two-step estimation procedure was con-

sidered to estimate the sample selection model, and Heckit correction was adopted

to check for selection bias. While the first step focused on the estimation of the

probit selection models (the results obtained are reported in Table 3), the HCE

models were selection-bias-corrected linear mixed models estimated by considering

positive expenditures only (the estimation results of the second-step are reported
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in Table 4). A comparison between the estimated models and the simple linear

mixed models for positive expenditures was also performed. Because of the sig-

nificant changes in the estimates and in the models’ goodness of fit measures, the

necessity of Heckman’s correction was confirmed in our analysis.

First-step mixed probit models (see Table 3) revealed a negative effect of male

gender and increasing positive effects of class age. Patients older than 65 exhibit

a significantly greater probability of demand for health care services, especially

for drug prescriptions and outpatient care. Moreover, patients cared for at home

were more likely to require the three types of care services analysed. This positive

association between demands for different health care services was also confirmed

by the positive coefficients of the dummy variables on the presence of some expen-

ditures included in the linear predictor. These positive and significant associations

between types of services revealed that health care services are not substitutes; that

is, patients facing greater needs for health care are generally more likely to demand

all types of care services. Being under the care of a paediatrician led to a greater

probability of drug prescriptions and hospitalisations but a lower probability of

outpatient expenditures. While the presence of some drug prescriptions did not

show significative heterogeneity across AHAs, relevant effects of AHAs emerged in

the probabilities of the other two types of services. Variances of second level errors

are significant in all three probit models.

[Table 3 about here.]

The second-step linear mixed models (see Table 4) for the expenditure amounts

on drug prescriptions, outpatient care and hospital services assessed the selection

bias, since the effect of the inverse Mills ratios were significant. Thus, the adopted

Heckman’s two-step procedure is justified. The age-class (reference age-class: “less

than 24 years”) effect was confirmed positive and increasing because all the dummy

coefficients differed significantly from zero in all three models. Instead, being under

the care of a paediatrician was a factor that reduced the average amount of expen-

ditures on all types of care services. The greatest predicted average expenditure in

drug prescriptions and outpatient services was observed among patients residing

in the administrative health area 4 (AHA 4), while the highest predicted expen-

ditures for hospitalisation were among those residing in AHA 5. The population

size of the municipalities, included as a weighting factor, showed a negligible effect.

The associations between HCE and the presence of different kinds of expenditures

appeared, instead, of more difficult interpretation. For drug prescription and out-

patient care expenditures were positively affected by the presence of the other kind

of HCE. On the contrary inpatient care expenditures were negatively related to

them. These variables were introduced into the models as proxies of the presence

of multiple pathologies, and thus, of bad health status.

[Table 4 about here.]
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To justify the choice of two-step random effects models, we conducted a com-

parison of some alternative model estimation methods. In particular, we considered

the copula based, the maximum likelihood and the two-step procedure based on

fixed-effects model specification. The maximum likelihood estimation based on

copulas were obtained considering the Frank copula as defined in Hasebe and Vi-

jverberg (2012) Results of the comparison were collected in Tables 5, 6 and 7 for

the drug, outpatient and hospital care expenditures respectively. The macro-area

dummies were omitted here in order to obtain fully comparable models. In fact, the

fixed-effect model specifications were affected by multicollinearity (GPs are clus-

tered in the macro areas). The comparison showed that the different estimation

methods brought to very similar results. The alternative specifications of endo-

geneity did not affect the selection and level processes. The only contradictory

result was the one of Frank copula applied to hospitalisation expenditure. Com-

putational issues were observed in the in-patient expenditure model and for this

reason the estimation results under Frank copula were different from the others

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

5 Discussion

In this paper, we focused on the assessment of HCE determinants within a mi-

crodata framework, which allowed us to combine the advantages of both individual

and macro-level studies. The estimation results of the sample selection models

confirmed some well-known health expenditure drivers, such as gender, age and

health care need. The relevant role of individual health status was supported by

the positive correlation between different sources of expenditures (e.g. Werblow

et al., 2007). This result also supports the idea that different types of health care

services are not substitute services when the whole population demand is consid-

ered and increasing levels of expenditures for all types of services reveal higher

levels of need. In our analysis, variables included as proxies of co-morbidity, such

as the home assistance service factor and “other expenditures” dummies, showed

positive effects in all models, except hospitalization in-patient services.

The cross-classified hierarchical structure of our database allowed us to as-

sess positive spatial patterns, which were also identified in some literature (e.g.

Moscone et al., 2007a,b, for the macroeconomic-data analysis) mindful of cross-

section dependence or spatial spillovers. Selection models (on probability of some

expenditure) on drug prescriptions and hospitalization presented strong positive

spatial component effects, probably underlying relevant roles of GP and proximity
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to the hospitals. In fact, models on the amount of expenditures revealed a posi-

tive spatial effect when drug prescriptions and outpatient care expenditures were

considered.

Generally, the probability of access to the health care system and the level

of expenditures strongly depend on the characteristics of the population, both at

the individual and area levels. In fact, the models estimation showed a significant

relationship between HCEs and age-class, gender (as in Werblow et al., 2007) and

the size of the municipalities’ population, as stated also by Costa-Font and Pons-

Novell (2007). On the GP level, the paediatricians presented higher probabilities of

drug prescriptions and hospitalisations and a lower probability of outpatient visits;

however, their effect on the amount of expenditures are negative, as expected,

considering the population in their charge. Finally, in all estimated models, the

introduction of the inverse Mills ratio revealed the relevance of a selection-process

consideration in this type of analysis.

6 Conclusions

This paper aimed to analyse individual HCE data by considering both the micro

and macroeconomic determinants of the phenomenon. In particular, we studied

the spatial distribution of the expenditures without considering aggregate data. To

take into account all the informative aspects of our dataset, a hierarchical spatial

sample selection model was proposed and evaluated. The model was applied to

the HCE data of the whole population residing in the Italian region of FVG. This

application of hierarchical spatial models to the individual-level analysis of HCE

allowed us to examine the phenomenon through the original disaggregated data.

From the decision makers’ points of view, the analysis of both the micro and

macro determinants of HCE can be very relevant. The analysis of the determi-

nants of expenditures, besides leading to a better understanding of this health

economic phenomenon, shows that most of the significant effects in the disaggre-

gated estimated models are connected with individual specific variables. However,

the contextual variables (at the levels of general practitioners and of municipalities)

are also influential. In fact, a small but significant heterogeneity between GPs was

identified, and the GPs’ specific error component is quite relevant, as shown by

the analysis. Moreover, the role of the spatial deterministic component demands

further investigation, since a significant positive spatial correlation can be observed

throughout the regional territory.

The estimated models presented interesting results, but other drivers of HCE

should also be included (i.e. more accurate measures of individual health sta-

tus, social deprivation at the municipality level and GPs’ performance measures).

Therefore, this work should be considered a first step in the analysis of individual

expenditures at the individual population level.

As discussed in Section 1, the model specifications and estimations are devel-
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oped through a feasible, simplified approach. Generalisations of the model can

also consider a SAR error structure. Moreover, the model can be developed in

a more general sample selection framework (at least considering the fixed-effect

model specifications). Finally, a proper multivariate model specification can be

considered, even if preliminary analyses show that correlations between different

expenditures have negligible effects on model estimation, due to the huge amount

of available observations.

Acknowledgement: the authors would like to thank Prof. Badi H. Baltagi and all

the other participants to the “IV Health Econometrics Workshop” for the precius

and helpful suggestions and comments.

References

Albouy, V., Davezies, L. and Debrand, T. (2010) Health expenditure models: A

comparison using panel data. Economic Modelling, 27, 791–803.

Angulo, A. M., Barberán, R., Egea, P. and Mur, J. (2011) An analysis of health

expenditure on a microdata population basis. Economic Modelling, 28, 169–180.

Anselin, L. (2002) Under the hood issues in the specification and interpretation of

spatial regression models. Agricultural economics, 27, 247–267.

Baltagi, B. H. and Moscone, F. (2010) Health care expenditure and income in the

oecd reconsidered: Evidence from panel data. Economic Modelling, 27, 804 –

811.

Boarnet, M. G. (1998) Spillovers and the locational effects of public infrastructure.

Journal of Regional Science, 38, 381–400.

Brueckner, J. K. (2003) Strategic interaction among governments: An overview of

empirical studies. International regional science review, 26, 175–188.

Buntin, M. B. and Zaslavsky, A. M. (2004) Too much ado about two-part models

and transformation?: Comparing methods of modeling medicare expenditures.

Journal of health economics, 23, 525–542.

Case, A. C., Rosen, H. S. and Hines Jr, J. R. (1993) Budget spillovers and fiscal

policy interdependence: Evidence from the states. Journal of public economics,

52, 285–307.

Cliff, A. and Ord, J. (1981) Spatial process, models and applications. Pion, London.

13



Costa-Font, J. and Moscone, F. (2008) The impact of decentralization and inter-

territorial interactions on spanish health expenditure. Empirical Economics, 34,

167–184.

Costa-Font, J. and Pons-Novell, J. (2007) Public health expenditure and spatial

interactions in a decentralized national health system. Health economics, 16,

291–306.

Deb, P., Munkin, M. K. and Trivedi, P. K. (2006) Bayesian analysis of the two-

part model with endogeneity: application to health care expenditure. Journal

of Applied Econometrics, 21, 1081–1099.

Deb, P. and Trivedi, P. K. (1997) Demand for medical care by the elderly: a finite

mixture approach. Journal of applied econometrics, 12, 313–336.

Deb, P. and Trivedi, P. K. (2002) The structure of demand for health care: latent

class versus two-part models. Journal of health economics, 21, 601–625.

Di Matteo, L. and Di Matteo, R. (1998) Evidence on the determinants of cana-

dian provincial government health expenditures: 1965–1991. Journal of Health

Economics, 17, 211–228.

Eibich, P. and Ziebarth, N. (2013) Examining the structure of spatial health effects

using hierarchical bayes models. Tech. rep., Verein für Socialpolitik/German

Economic Association.

Freeman, D. G. (2003) Is health care a necessity or a luxury? pooled estimates of

income elasticity from us state-level data. Applied Economics, 35, 495–502.

Gerdtham, U.-G. and Jönsson, B. (2000) International comparisons of health ex-

penditure: theory, data and econometric analysis. Handbook of health economics,

1, 11–53.

Gerdtham, U.-G., Søgaard, J., Andersson, F. and Jönsson, B. (1992) An econo-

metric analysis of health care expenditure: a cross-section study of the oecd

countries. Journal of health economics, 11, 63–84.

Getzen, T. E. (2000) Health care is an individual necessity and a national luxury:

applying multilevel decision models to the analysis of health care expenditures.

Journal of Health Economics, 19, 259 – 270.

Giannoni, M. and Hitiris, T. (2002) The regional impact of health care expenditure:

the case of italy. Applied Economics, 34, 1829–1836.

Hasebe, T. (2013) Copula-based maximum-likelihood estimation of sample-

selection models. The Stata journal, 13, 547–573.

14



Hasebe, T. and Vijverberg, W. P. (2012) A flexible sample selection model: A

gtl-copula approach. Tech. rep., Discussion Paper Series, Forschungsinstitut zur

Zukunft der Arbeit.

Heckman, J. J. (1979) Sample selection bias as a specification error. Econometrica:

Journal of the econometric society, 153–161.

Leung, S. F. and Yu, S. (1996) On the choice between sample selection and two-part

models. Journal of econometrics, 72, 197–229.

Lopez-Casasnovas, G., Costa-Font, J. and Planas, I. (2005) Diversity and regional

inequalities in the spanish “system of health care services”. Health Economics,

14, S221–S235.

Madden, D. (2008) Sample selection versus two-part models revisited: The case of

female smoking and drinking. Journal of Health Economics, 27, 300–307.

Moscone, F. (2011) Geographical variations in expenditure of learning disability

services in england. Applied Economics, 43, 2997–3005.

Moscone, F. and Knapp, M. (2005) Exploring the spatial pattern of mental health

expenditure. Journal of mental health policy and economics, 8, 205.

Moscone, F., Knapp, M. and Tosetti, E. (2007a) Mental health expenditure in

england: A spatial panel approach. Journal of Health Economics, 26, 842 – 864.

Moscone, F., Tosetti, E. and Knapp, M. (2007b) Sur model with spatial effects: an

application to mental health expenditure. Health economics, 16, 1403–1408.

Newhouse, J. P. (1992) Medical care costs: how much welfare loss? The Journal

of Economic Perspectives, 3–21.

R Core Team (2013) R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria. URL

http://www.R-project.org/.

Rosenberger, R. S., Sneh, Y., Phipps, T. T., Gurvitch, R. et al. (2005) A spatial

analysis of linkages between health care expenditures, physical inactivity, obesity

and recreation supply. Journal of Leisure Research, 37, 216–235.

StataCorp (2009) Stata Statistical Software: Release 11. College Station, TX.

Wang, Z. (2009) The determinants of health expenditures: evidence from us state-

level data. Applied Economics, 41, 429–435.

Werblow, A., Felder, S. and Zweifel, P. (2007) Population ageing and health care

expenditure: a school of ‘red herrings’? Health Economics, 16, 1109–1126.

15



Winkelmann, R. (2012) Copula bivariate probit models: with an application to

medical expenditures. Health Economics, 21, 1444–1455.

Wong, A., van Baal, P. H., Boshuizen, H. C. and Polder, J. J. (2011) Exploring

the influence of proximity to death on disease-specific hospital expenditures: a

carpaccio of red herrings. Health economics, 20, 379–400.

Zaccomer, G. and Mason, P. (2011) A new spatial shift-share decomposition for

the regional growth analysis: a local study of the employment based on italian

business statistical register. Statistical Methods & Applications, 20, 329–356.

16



List of Figures

1 Spatial distribution of total health care and its components. . 18

17



Aggregate expenditures

>95th quant
75th - 95th quant
50th - 75th quant
25th - 50th quant
5th - 25th quant
< 5th quant

N

10 km

Drugs prescriptions

>95th quant
75th - 95th quant
50th - 75th quant
25th - 50th quant
5th - 25th quant
< 5th quant

N

10 km

>95th quant
75th - 95th quant
50th - 75th quant
25th - 50th quant
5th - 25th quant
< 5th quant

N

10 km

Outpatient care Hospitalization

>95th quant
75th - 95th quant
50th - 75th quant
25th - 50th quant
5th - 25th quant
< 5th quant

N

10 km

Figure 1: Spatial distribution of total health care and its components.

18



List of Tables

1 Conditional percentages of positive health care expenditures
in year 2010. Data refers to 999,488 individuals clustered in
219 municipalities and in 1092 GPs. . . . . . . . . . . . . . . 20

2 Conditional means of positive health care expenditures in
year 2010. Data refers to 999,488 individuals clustered in
219 municipalities and in 1092 GPs. . . . . . . . . . . . . . . 21

3 First-step probit models estimation results. . . . . . . . . . . 22
4 Second-step linear mixed models estimation results. . . . . . 23
5 The comparison of some estimation strategies for sample-

selection model applied to drug expenditures. Sample-selection
two-steps estimation strategies considering both fixed and
random-effects models are compared with the maximum like-
lihood and the copula-based ones. . . . . . . . . . . . . . . . . 24

6 The comparison of some estimation strategies for sample-
selection model applied to outpatient care expenditures. Sample-
selection two-steps estimation strategies considering both fixed
and random-effects models are compared with the maximum
likelihood and the copula-based ones. . . . . . . . . . . . . . . 25

7 The comparison of some estimation strategies for sample-
selection model applied to hospital care expenditures. Sample-
selection two-steps estimation strategies considering both fixed
and random-effects models are compared with the maximum
likelihood and the copula-based ones. . . . . . . . . . . . . . . 26

19



Table 1: Conditional percentages of positive health care expenditures in year 2010.
Data refers to 999,488 individuals clustered in 219 municipalities and in 1092 GPs.

Percentage of individual Expenditures
Variables Drug Outpatient Inpatient Number of

prescriptions care care observations

General 66.13% 64.95% 10.00% 999, 488
Gender

Female 71.16% 70.01% 10.86% 518, 675
Male 60.70% 59.49% 9.07% 480, 813

Age Class
Under 25 46.64% 47.74% 7.82% 200, 089
25-44 53.23% 56.50% 8.34% 250, 921
45-64 69.85% 67.39% 8.25% 303, 550
Over 65 90.64% 84.65% 15.65% 244, 928

GP type
General Practitioner 67.34% 67.13% 9.79% 915, 959
Paediatrician 52.80% 41.11% 12.35% 83, 529

Home assistance level
0 63.41% 62.48% 8.65% 902, 717
1 88.21% 85.39% 18.92% 46, 884
2 94.47% 90.41% 25.98% 49, 887

Administrative area
1 67.05% 65.75% 10.19% 196, 941
2 67.05% 66.44% 10.29% 115, 279
3 64.62% 65.03% 10.12% 57, 278
4 64.82% 64.41% 10.14% 288, 300
5 66.84% 65.98% 9.75% 88, 575
6 66.57% 63.90% 9.62% 253, 115
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Table 2: Conditional means of positive health care expenditures in year 2010. Data
refers to 999,488 individuals clustered in 219 municipalities and in 1092 GPs.

Mean values of individual Expenditures
Variables Drug Outpatient Inpatient

prescriptions care care

General 337.82 391.26 4931.28
Gender

Female 324.12 391.46 4577.11
Male 355.15 391.01 5388.47

Age Class
Under 25 68.89 189.80 2164.24
25-44 138.16 297.47 3393.94
45-64 306.42 369.44 5240.85
Over 65 600.98 569.75 6697.95

GP type
General practitioner 358.49 404.70 5291.43
Paediatrician 48.69 150.52 1801.07

Home assistance level
0 280.75 347.27 4082.79
1 599.38 653.44 7381.19
2 801.49 708.73 8368.06

Administrative area
1 365.89 432.99 5096.43
2 359.27 395.24 5133.62
3 317.10 354.10 4960.98
4 332.43 377.48 4944.47
5 331.70 387.76 5101.52
6 318.65 381.61 4613.43
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Table 3: First-step probit models estimation results.

Presence of positive Health Care Expenditures
Drug prescriptions Outpatient Care Inpatient care

Intercept −2.393 (0.625) 0.340 (0.459) −3.656 (0.234)

Male −0.171 (0.003) −0.175 (0.003) −0.008 (0.004)
Age 25 − 44 0.250 (0.005) −0.000 (0.005) 0.241 (0.008)
Age 45 − 64 0.640 (0.005) 0.171 (0.005) 0.105 (0.008)
Age ≥ 65 1.255 (0.006) 0.484 (0.005) 0.247 (0.008)
Home Assist. Lev.2 0.348 (0.009) 0.298 (0.008) 0.332 (0.007)
Home Assist. Lev.3 0.533 (0.011) 0.359 (0.009) 0.532 (0.007)

Paediatrician 0.354 (0.015) −0.444 (0.013) 0.655 (0.012)

Admin. Area 2 0.011 (0.018) 0.058 (0.016) 0.061 (0.013)
Admin. Area 3 −0.011 (0.022) 0.053 (0.020) 0.041 (0.017)
Admin. Area 4 −0.001 (0.014) 0.035 (0.015) 0.060 (0.011)
Admin. Area 5 −0.005 (0.020) 0.033 (0.018) −0.002 (0.016)
Admin. Area 6 0.050 (0.018) 0.012 (0.019) 0.073 (0.013)
Spatial component 2.783 (0.656) −0.962 (0.704) 12.024 (2.306)
Population size −0.002 (0.002) 0.003 (0.001) 0.008 (0.002)

Dummy Drugs Exp. − − 0.783 (0.003) 0.333 (0.005)
Dummy Outp. Exp. 0.777 (0.003) − − 0.698 (0.005)
Dummy Hospital. 0.378 (0.006) 0.810 (0.006) − −
σu 0.137 (0.003) 0.119 (0.003) 0.080 (0.003)
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Table 4: Second-step linear mixed models estimation results.

Health Care Expenditures
Drug prescriptions Outpatient Care Inpatient care

Intercept 2.029 (0.839) 0.677 (1.239) 9.334 (1.380)

Male 0.217 (0.004) −0.041 (0.004) 0.070 (0.006)
Age 25 − 44 0.186 (0.009) 0.265 (0.005) 0.095 (0.014)
Age 45 − 64 0.837 (0.013) 0.369 (0.006) 0.414 (0.014)
Age ≥ 65 1.593 (0.018) 0.577 (0.008) 0.474 (0.015)

Paediatrician −0.560 (0.019) −0.323 (0.015) −0.951 (0.020)

Admin. Area 2 0.001 (0.022) 0.051 (0.019) 0.026 (0.014)
Admin. Area 3 −0.031 (0.027) 0.015 (0.032) 0.006 (0.019)
Admin. Area 4 0.047 (0.019) 0.072 (0.021) 0.019 (0.011)
Admin. Area 5 −0.009 (0.026) 0.012 (0.024) 0.043 (0.016)
Admin. Area 6 0.018 (0.027) −0.034 (0.030) −0.019 (0.017)
Spatial component 0.446 (0.179) 0.801 (0.242) 0.074 (0.171)
Population size 0.006 (0.002) 0.005 (0.001) −0.007 (0.003)

Dummy Drugs Exp. − − 0.174 (0.012) −0.096 (0.010)
Dummy Outp. Exp. 0.067 (0.013) − − −0.402 (0.016)
Dummy Hospital. 0.238 (0.007) 0.533 (0.009) − −
Inverse Mills Ratio −1.178 (0.028) −0.570 (0.026) −1.023 (0.021)

σu 0.152 0.107 0.041
σe 1.372 1.105 0.887
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Table 5: The comparison of some estimation strategies for sample-selection model
applied to drug expenditures. Sample-selection two-steps estimation strategies consid-
ering both fixed and random-effects models are compared with the maximum likelihood
and the copula-based ones.

Heckman Models: Selection Equations
Two-Step Two-Step Maximum Frank

Random-Effects Fixed-Effects Likelihood Copula

Intercept −3.333 (0.320) −1.901 (0.632) −1.824 (0.605) −1.856 (0.613)
Male −0.171 (0.003) −0.171 (0.003) −0.168 (0.003) −0.166 (0.003)
Age 25 − 44 0.251 (0.005) 0.251 (0.005) 0.256 (0.005) 0.263 (0.005)
Age 45 − 64 0.640 (0.005) 0.641 (0.005) 0.651 (0.005) 0.677 (0.005)
Age ≥ 65 1.255 (0.006) 1.257 (0.006) 1.195 (0.006) 1.235 (0.006)
Paediatrician 0.356 (0.015) 0.414 (0.071) 0.416 (0.070) 0.416 (0.071)
Home Assist. Lev. 2 0.348 (0.009) 0.349 (0.009) 0.423 (0.008) 0.419 (0.008)
Home Assist. Lev. 3 0.532 (0.011) 0.534 (0.011) 0.674 (0.010) 0.659 (0.010)
Dummy Outp. Exp. 0.777 (0.003) 0.777 (0.003) 0.769 (0.003) 0.353 (0.006)
Dummy Hosp. Exp. 0.378 (0.006) 0.378 (0.006) 0.351 (0.006) 0.773 (0.003)
Spatial component 4.220 (0.480) 1.913 (0.953) 1.802 (0.912) 1.826 (0.924)
Pop. Size −0.001 (0.002) −0.001 (0.002) −0.001 (0.002) 0.000 (0.002)

Pseudo R2 0.191
Correctly Classified 0.731

Heckman Models: Expenditures Equations

Intercept 2.951 (0.499) 1.817 (1.182) 1.481 (1.171) 1.779 (1.169)
Male 0.217 (0.004) 0.202 (0.004) 0.184 (0.004) 0.165 (0.004)
Age 25 − 44 0.185 (0.009) 0.216 (0.008) 0.258 (0.008) 0.250 (0.007)
Age 45 − 64 0.836 (0.013) 0.906 (0.012) 0.999 (0.008) 1.013 (0.007)
Age ≥ 65 1.591 (0.018) 1.702 (0.017) 1.845 (0.009) 1.910 (0.008)
Paediatrician −0.560 (0.019) −0.288 (0.125) −0.406 (0.097) −0.319 (0.095)
Dummy Outp. Exp. 0.065 (0.013) 0.144 (0.012) 0.244 (0.006) 0.301 (0.005)
Dummy Hosp. Exp. 0.237 (0.006) 0.262 (0.006) 0.293 (0.006) 0.269 (0.006)
Pop. Size 0.007 (0.002) 0.008 (0.003) 0.008 (0.003) 0.007 (0.003)
Spatial component 0.249 (0.109) 0.431 (0.256) 0.444 (0.254) 0.359 (0.253)

R2 0.355

Dependence parameters

Inv.Mills −1.181 (0.028) −1.008 (0.027)
ρ −0.525 (0.006)
θ −2.952 (0.046)
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Table 6: The comparison of some estimation strategies for sample-selection model ap-
plied to outpatient care expenditures. Sample-selection two-steps estimation strategies
considering both fixed and random-effects models are compared with the maximum
likelihood and the copula-based ones.

Heckman Models: Selection Equations
Two-Step Two-Step Maximum Frank

Random-Effects Fixed-Effects Likelihood Copula

Intercept 0.141 (0.274) 1.231 (0.553) 1.002 (0.519) 1.090 (0.533)
Male −0.175 (0.003) −0.174 (0.003) −0.177 (0.003) −0.176 (0.003)
Age 25 − 44 0.000 (0.005) 0.001 (0.005) 0.006 (0.005) −0.003 (0.005)
Age 45 − 64 0.171 (0.005) 0.172 (0.005) 0.166 (0.005) 0.165 (0.005)
Age ≥ 65 0.484 (0.005) 0.485 (0.005) 0.469 (0.005) 0.476 (0.005)
Paediatrician −0.444 (0.013) −0.039 (0.071) −0.047 (0.071) −0.042 (0.071)
Home Assist. Lev. 2 0.297 (0.008) 0.298 (0.008) 0.356 (0.007) 0.357 (0.008)
Home Assist. Lev. 3 0.358 (0.009) 0.359 (0.009) 0.410 (0.008) 0.414 (0.008)
Dummy Drugs Exp. 0.782 (0.003) 0.783 (0.003) 0.778 (0.003) 0.777 (0.003)
Dummy Hosp. Exp. 0.810 (0.006) 0.811 (0.006) 0.797 (0.006) 0.808 (0.006)
Spatial component −0.566 (0.429) −2.400 (0.867) −2.037 (0.814) −2.167 (0.836)
Pop. Size 0.000 (0.002) 0.000 (0.002) 0.000 (0.002) 0.000 (0.002)

Pseudo R2 0.158
Correctly Classified 0.720

Heckman Models: Expenditures Equations

Intercept 1.960 (0.469) 2.529 (1.811) 2.689 (1.800) 3.483 (1.775)
Male −0.042 (0.004) −0.052 (0.003) −0.048 (0.003) −0.038 (0.003)
Age 25 − 44 0.265 (0.005) 0.266 (0.005) 0.265 (0.005) 0.238 (0.005)
Age 45 − 64 0.370 (0.006) 0.383 (0.006) 0.376 (0.005) 0.337 (0.005)
Age ≥ 65 0.578 (0.008) 0.608 (0.008) 0.595 (0.006) 0.520 (0.006)
Paediatrician −0.323 (0.015) −0.189 (0.078) −0.188 (0.079) −0.155 (0.079)
Dummy Drugs Exp. 0.176 (0.013) 0.230 (0.012) 0.205 (0.005) 0.130 (0.004)
Dummy Hosp. Exp. 0.535 (0.009) 0.570 (0.008) 0.554 (0.005) 0.502 (0.005)
Pop. Size 0.005 (0.002) 0.004 (0.002) 0.004 (0.002) 0.005 (0.002)
Spatial component 0.555 (0.094) 0.388 (0.361) 0.366 (0.358) 0.243 (0.354)

R2 0.175

Dependence parameters

Inv.Mills −0.592 (0.026) −0.478 (0.025)
ρ −0.457 (0.006)
θ −4.043 (0.042)
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Table 7: The comparison of some estimation strategies for sample-selection model
applied to hospital care expenditures. Sample-selection two-steps estimation strategies
considering both fixed and random-effects models are compared with the maximum
likelihood and the copula-based ones.

Heckman Models: Selection Equations
Two-Step Two-Step Maximum Frank

Random-Effects Fixed-Effects Likelihood Copula

Intercept −3.286 (0.154) −3.433 (0.451) −3.401 (0.446) −3.259 (0.365)
Male −0.008 (0.004) −0.007 (0.004) −0.007 (0.004) 0.002 (0.004)
Age 25 − 44 0.241 (0.008) 0.240 (0.008) 0.239 (0.008) 0.229 (0.008)
Age 45 − 64 0.105 (0.008) 0.105 (0.008) 0.107 (0.008) 0.104 (0.008)
Age ≥ 65 0.248 (0.008) 0.246 (0.008) 0.260 (0.008) 0.252 (0.008)
Paediatrician 0.659 (0.012) 1.065 (0.083) 1.071 (0.083) 1.035 (0.082)
Home Assist. Lev. 2 0.329 (0.007) 0.336 (0.007) 0.296 (0.007) 0.330 (0.006)
Home Assist. Lev. 3 0.527 (0.007) 0.539 (0.007) 0.463 (0.007) 0.495 (0.006)
Dummy Drugs Exp. 0.334 (0.005) 0.335 (0.005) 0.337 (0.005) 0.338 (0.005)
Dummy Outp. Exp. 0.699 (0.005) 0.702 (0.005) 0.702 (0.005) 0.703 (0.005)
Spatial component 9.244 (1.549) 10.615 (4.350) 10.309 (4.305) 8.889 (3.510)
Pop. Size 0.002 (0.002) 0.004 (0.003) 0.004 (0.003) 0.004 (0.003)

Pseudo R2 0.092
Correctly Classified 0.900

Heckman Models: Expenditures Equations

Intercept 7.869 (0.652) 7.025 (4.205) 6.493 (4.003) 1.333 (3.895)
Male 0.070 (0.006) 0.070 (0.006) 0.100 (0.007) 0.067 (0.005)
Age 25 − 44 0.097 (0.014) 0.093 (0.014) 0.005 (0.016) 0.308 (0.013)
Age 45 − 64 0.416 (0.014) 0.410 (0.014) 0.371 (0.015) 0.544 (0.013)
Age ≥ 65 0.477 (0.015) 0.468 (0.015) 0.371 (0.016) 0.885 (0.013)
Paediatrician −0.949 (0.020) −1.109 (0.186) −1.409 (0.141) −0.216 (0.110)
Dummy Drugs Exp. −0.093 (0.011) −0.098 (0.011) −0.163 (0.010) 0.260 (0.008)
Dummy Outp. Exp. −0.399 (0.016) −0.406 (0.016) −0.544 (0.012) 0.313 (0.010)
Pop. Size −0.011 (0.002) −0.002 (0.005) 0.000 (0.005) −0.001 (0.004)
Spatial component 0.259 (0.080) 0.350 (0.523) 0.495 (0.498) 0.610 (0.484)

R2 0.226

Dependence parameters

Inv.Mills −1.017 (0.021) −1.034 (0.021)
ρ −0.884 (0.002)
θ 3.598 (0.045)
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