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Abstract

This paper proposes some methods for outlier identification in the regression setting, mo-
tivated by the analysis of steelmaking process data. Modern steelmaking processes produce a
large body of data, and it is essential to analyze them for monitoring the production process.
Here we focus in particular on settings where the response variable is given by the energy
level consumed at the plant, in relation with another variable, such as the oxygen level. The
paper proposes a methodology that extends to the regression setting the boxplot rule, com-
monly used for outlier screening with univariate data. The focus here is on bivariate settings
with a single covariate, but the method is defined more generally. The proposal is based
on quantile regression, including an additional transformation parameter for selecting the
best scale for linearity of the conditional quantiles. The resulting method is used to perform
labeling of potential outliers, with a quite low computational complexity, allowing for simple
implementation within statistical software as well as simple spreadsheets. Some simulation
experiments and application to real life examples investigate and illustrate the methodology.
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1 Introduction

Outlier detection is a fundamental task of data analysis in virtually any field of application. The

statistical literature on the subject is very extensive, starting from classical references (e.g Barnett

& Lewis, 1994; Rousseeuw & Leroy, 1987), and including essentially all the texts on regression

models (e.g. Cook & Weisberg, 1982; Fox & Weisberg, 2011). To some extent also nearly all

the literature on robust statistics has covered the task (e.g. Atkinson & Riani, 2000; Huber &

Ronchetti, 2009; Maronna, Martin, & Yohai, 2006), not to mention that approaches developed

in machine learning and related fields have also treated the subject (e.g. Aggarwal, 2013; Han,

Kamber, & Pei, 2006; Hodge & Austin, 2004).

Modern steelmaking companies make intensive usage of process data, collected and analysed

at the production plant. The main purposes of this activity is to monitor the stability of the

production process, to evaluate the quality of the production, to increase production volumes

and to prevent failures, increasing the overall e�ciency of the plant. Anomalous conditions are

monitored since they can lead to dangerous failures and large production losses, therefore outlier

detection is an essential task. For basic information about the steelmaking process, see Turkdogan

(1996) and the references therein. Some introductory general information can also be found at

http://www.steeluniversity.org.

In our study we consider data coming from an Electric Arc Furnace (EAF) plant. The EAF is

a plant that produces steel from ferrous scrap and various kind of iron units. It consumes a huge

amount of resources, resulting in a quite energy-intensive process, therefore a variable of primary

interest is the energy consumed in the melting process. Indeed, monitoring the consumed energy

is an important task leading to improvements in energy e�ciency and reduced production costs.

The actual plant at which the data used in this paper were obtained is not disclosed to preserve

proprietary information, but to some extent the data employed in this paper are representative of

a broad class of similar datasets.

Usage of statistical process control techniques, such as control charts, has an important role in

steelmaking (e.g. Kano & Nakagawa, 2008). Univariate plots, such as control charts, may be used

to monitor the energy consumptions and detect anomalous points, yet multivariate approaches

are essential to monitor the consumed energy level with respect to other variables characterizing

the melting process, such as the O2 level (Turkdogan, 1996, Chap. 8). Figure 1 displays an

illustrative data set, showing the energy consumption (Unit of measurement: kWh/ton - kilowatt-

hour per charged ton of scrap material in the furnace) against the O2 level (Unit of measurement:

SCF/ton - standard cubic foot per charged ton) for a sample of n = 1216 heats collected in an

EAF. For the remainder of this paper, this data set will be denoted as the D1 data set. A plot

of studentized deletion residuals obtained from simple linear regression (e.g. Cook & Weisberg,
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1982, §2.2) quickly detects some outlying observations, which would not be flagged by univariate

displays.
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Figure 1: D1 data. Left panel: plot of energy level against O2 level for a sample of n = 1216 heats.

Right panel: index plot of studentized deletion residuals, with horizontal lines at ±2 added.

Regression diagnostics (Belsley, Kuh, & Welsch, 1980; Cook & Weisberg, 1982) can be

e↵ective in outlier detection, and they have the advantage of being based on a method as simple

as linear regression. At the same time, the latter fact is the main limitation of such approach,

as the lack of robustness of linear regression prevents its routine application for semi-automatic

outlier identification.

The aim of this paper is to propose a simple and robust method for outlier labeling based

on quantile regression, first introduced by Koenker and Bassett (1978) and for which Koenker

(2005) provides a broad overview. The method is based on a single index assumption, achieving

semi-automatic transformation to the scale of the response variable where linearity of conditional

quantiles is supported by the available data. The methodology extends to the regression setting

the boxplot rule for univariate settings (Tukey, 1977). The resulting method seems quite e↵ective

and, at the same time, very convenient for practical implementation. We stress that the method

implements outlier labeling, meaning that we endorse screening for potential outliers rather than

formal detection based on statistical testing.
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The plan of the paper is as follows. Section 2 summarizes some useful theory on outlier

detection, whereas Section 3 provides the methodology proposed in this paper. Results from some

simulation studies are summarized in Section 4, while results from empirical examples are given

in Section 5. Some final remarks conclude the paper.

2 Background on outlier identification

As mentioned in the introduction, the existing body of literature on outlier detection is very

extensive, and here we confine the attention to those methods which are close to the approach

proposed here. In the univariate setting, some authors such as Brant (1990) and Barnett and

Lewis (1994, Chap. 2) make a distinction between classical and resistant outlier rules, and to

some extent the same principle can be extended to multivariate settings.

The boxplot rule (Tukey, 1977) is probably the most commonly used resistant rule for outlier

screening. Given a sample of size n, if q
L

and q
U

are the upper and lower quartiles, the inner and

outer fences are given by

IF
L

= q
L

� k (q
U

� q
L

)

and

IF
U

= q
U

+ k (q
U

� q
L

) ,

for a certain choice of the constant k. Tukey defined any observations falling below IF
L

or above

IF
U

for k = 1.5 as outside outliners, while those falling outside the fences for k = 3 as far out

outliners. The boxplot rule is appealingly simple and quickly gained a widespread usage in applied

statistics, linked to the popularity of the boxplot for exploratory data analysis. Hoaglin, Iglewicz,

and Tukey (1986) were among the first that made a careful study of this procedure. They noted

that, being based on robust measures, in most cases it avoids the problem of masking, which

arises where the presence of multiple outliers makes them di�cult to detect. The same authors

made also a study of the swamping properties of the procedure, that is the tendency to misclassify

observations as outliers. They made a distinction between the outside rate per observation, that

is the misclassification rate for a single observation, and the some-outside rate per sample, which

corresponds to the sample-wise error rate in simultaneous inference. Hoaglin et al. (1986) noted

that, under some parametric distribution for the data, both the two error rates for the boxplot

rule have a strong dependence on the sample size. Brant (1990) made a thorough comparison

between the boxplot rule and the classical ESD rule (Rosner, 1983). He focused in particular on

the some-outside rate per sample, coming to the conclusion that classical rules and the boxplot

rule may be equally e↵ective, with perhaps an exception for normal data where classical rules may

be preferable. We note in passing that Brant (1990) made the important remark that “the outlier
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problem is su�ciently ill-posed that optimal solutions are not feasible”, implying that the best

that can be done is to investigate on how some proposed methods perform in some situations of

interest.

The widespread usage of the boxplot rule lead several authors to propose adjustments designed

to make it more suitable for some specific situations. Among the many proposals, the median

rule introduced by Carling (2000) replaces the fences with q
M

± k1 (qU � q
L

), where q
M

is the

sample median. Similarly, Kimber (1990) proposed the use of semi-interquartile ranges to adapt

to asymmetric samples, obtaining the fences

IFS
L

= q
M

� 2 k2 (qM � q
L

) , IFS
U

= q
M

+ 2 k2 (qU � q
M

) .

The paper by Carling (2000) is noteworthy also because a method for determining k and

k1 is proposed, for the boxplot and the median rule respectively. Carling’s method is designed

for achieving a predetermined outside rate per observation for a given sample size, using some

information about the data distribution. The method by Schwertman and de Silva (2007), instead,

extends the boxplot rule to control the some-outside rate per sample for a given sample size.

Similarly to the ESD rule, their method can be used to identify multiple outliers. The Carling

and Schwertman and de Silva methods are compared in Carter, Schwertman, and Kiser (2009).

Moving from the univariate to the regression setting, things get quickly more complicated, as

multivariate outliers are surely more challenging (Rousseeuw & Leroy, 1987). Our aim is to obtain

a resistant rule, in the same spirit of the boxplot rule. Direct extension of the boxplot to more

than one dimension do exist, at least in the bivariate case (Rousseeuw, Ruts, & Tukey, 1999), but

they are not quite as practical as the univariate version. In a sense, the most direct way to obtain

a resistant rule in a regression setting employs instead quantile regression (e.g. Koenker, 2005).

The idea is actually very simple, and it is best presented in the bivariate case, though extensions

to several regressors are feasible, and they will be touched in passing later on.

Let Q
Y |x(⌧ |x) the conditional quantile function of the response variable for a given value x of

the regressor, for any ⌧ 2 (0, 1). Merely by analogy with the unidimensional case, we can simply

define the fences for outlier labeling as

IF
L

(x) = Q
Y |x(0.25|x)� k {Q

Y |x(0.75|x)�Q
Y |x(0.25|x)} (1)

IF
U

(x) = Q
Y |x(0.75|x) + k {Q

Y |x(0.75|x)�Q
Y |x(0.25|x)} .

The method was actually proposed by Cho, Kim, Jung, Lee, and Lee (2008) for mass spectrometry

experiments and Eo, Hong, and Cho (2014) for censored data. Both these two papers were

supported by some R software (R Core Team, 2014), based on the quantreg library for quantile

regression (Koenker, 2013).
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A resistant rule based on quantile regression is appealing for the data of interest in this paper,

as outlying values are more likely to occur in the response variable, rather than in the regressors.

Quantile regression suits well this kind of situations, having a satisfactory breakdown point for

fixed design points (Koenker, 2005, §2.3.2). The main problem for the application of outlier

labeling based on (1) is the specification of the form for Q
Y |x(⌧ |x). It is tempting to specify a

linear form Q
Y |x(⌧ |x) = �0(⌧) + x �1(⌧), but some attention is required. Figure 2 exemplifies

two possible situations. The left panel shows the application of the resistant rule based on (1)

with k = 1.5 for an artificial data set, simulated from the regression line fitted to the data of

Figure 1 assuming normal error with constant variance, whereas the right panel displays the same

procedure applied to the original data.
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Figure 2: Plot of energy level against O2 level for a simulated data set (left panel) and for

the D1 data set (right panel). Fences based on quantile regression computed with k = 1.5 are

superimposed, for linear quantiles (solid lines), nonparametric quantiles (dashed lines) and for the

single-index method introduced in Section 3 (dotted).

The plots report also the fences based on a nonparametric specification of the conditional

quantiles, adopting the smoothing splines specification implemented by the rqss function of the

quantreg library. For the artificial data set, the two specifications agree reasonably well, with

perhaps a minor discrepancy for lower values of oxygen, where data sparsity prevents an accurate
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estimation of the regression quantiles for the nonparametric method. When k = 1.5, both methods

flag few observations as potential outliers, 12 in the linear case and 19 in the nonparametric one

respectively i.e. around 1% of the cases for either method. No observation is flagged by either

method with k = 3. Things are quite di↵erent for the real data. They exhibit the presence

of some outlying observations, and a substantial amount of heterogeneous variability, resulting

in somewhat di↵erent fences for the linear and nonparametric quantiles. The method based on

linear quantiles flags 53 and 16 observations with k = 1.5 and k = 3 respectively, whereas for

the nonparametric quantiles these numbers are down to 38 and 12 respectively. Essentially, the

discrepancy is due to the fact that the fences based on the linear specification converge to a single

point for decreasing values of oxygen, flagging some points with low oxygen values that are not

labelled by the nonparametric version. The fences based on the latter method are once again

wider when the sample information is smaller, a rather sensible property.

The fact that with the linear specification of quantiles the upper and lower fences may tend

to converge, and even cross for an x-value included in the sample, is a direct consequence of the

fact that estimated linear quantiles for di↵erent values of ⌧ will typically have di↵erent slopes
b�1(⌧). The problem of quantile crossing is well known in quantile regression (e.g Koenker, 2005,

§2.5). Some solutions that avoid the crossing do exist, such as the constrained method proposed

by Bondell, Reich, and Wang (2010). Such method, however, would not have any e↵ect in cases

like those of the right panel of Figure 2, where the crossing does not actually occur within the

convex hull of the observed data points.

The nonparametric specification of the fences is not ideal either. In fact, whereas the linear

quantile regression is very simple, as the linear coe�cients for any ⌧ can be easily estimated by

standard linear programming (Koenker, 2005, Chap. 6), nonparametric specifications are much

more challenging. Even when well-tested and dedicated software is employed, like for the examples

of Figure 2, some care is required in order to obtain sensible estimates. For both the data sets the

smoothness parameter � has to be set to a value much larger than the default value of 1 for rqss

to obtain smooth estimated quantiles; the plots were actually obtained with � = 50. Even so, the

obtained fences are marginally unsatisfactory, with some local nonlinearities which may require

some further attention. The remainder of this paper will be devoted to a method for implementing

the resistant rule (1), which combines computational simplicity with e↵ectiveness for the kind of

data of interest here.
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3 A practical method for outlier labelling

It can be argued that quantile regression provides the best route for extending the boxplot rule

for outlier labeling to regression settings, nonetheless, as mentioned in the previous section, some

care is required for its practical implementation.

3.1 Quantile regression based on a single-index assumption

The main idea of the proposal of this paper is to look for a scale for which the linearity assumption

for the conditional quantiles is supported from the data. This has been rather customary for

standard linear regression based on ordinary least squares, since the pioneeristic paper by Box

and Cox (1964) on parametric response transformations. For quantile regression, the same idea

has found application in econometrics.

Powell (1991) proposed a nonlinear specification for the conditional quantiles, employing a

single-index assumption. In particular, given a linear index xT�(⌧) for a generic vector of covariate

values x, the form assumed for Q
Y |x(⌧ |x) is

Q
Y |x(⌧ |x) = g

�
xT�(⌧),�(⌧)

 
, (2)

where g(·) is a strictly increasing function in xT�(⌧), and it depends on the unknown parameter

�(⌧) as well. A possible choice is to set the inverse of g
�
xT �(⌧),�(⌧)

 
in the first argument equal

to the Box-Cox transformation, given by

g�1(y,�) =

8
<

:
(y� � 1)/� if � 6= 0

log(y) if � = 0 .
(3)

To be precise, Powell (1991) assumed a more general power transformation than (3), but as a

matter of fact all the published applications of this methodology for quantile regression have em-

ployed the Box-Cox transformations; see Fitzenberger, Wilke, and Zhang (2009) and the references

therein. As g{·,�(⌧)} is strictly increasing, and due to the fact that quantiles are order-preserving,

by applying the inverse transformation g�1
{·,�(⌧)} to both sides of (2) it follows that

Q
g

�1{Y,�(⌧)}|x(⌧ |x) = xT�(⌧) ,

namely the linear assumption holds for the quantiles of the response variable transformed according

to g�1
{·,�(⌧)}.

In terms of the original response variable, when the Box-Cox transformation (3) is employed,

from the form of the inverse function (3) we obtain

Q
Y |x(⌧ |x) =

8
<

:
{�(⌧) xT�(⌧) + 1}1/�(⌧) if �(⌧) 6= 0

exp{xT�(⌧)} if �(⌧) = 0 .
(4)
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The above form shows that the proposal implies a nonlinear form for the quantiles of the original

response and, perhaps more importantly, that by letting the parameter �(⌧) indexing the trans-

formation depend on ⌧ we are not imposing to work on the same scale for all the quantiles of

interest, thus achieving a noteworthy amount of flexibility.

3.2 Parameter estimation

Chamberlain (1994) suggested a two-step estimation procedure to estimate the parameters �(⌧)

and �(⌧) for a given value of ⌧ . Using standard notation for quantile regression, let ⇢
⌧

(u) denote

the piecewise linear loss function

⇢(u) = u {⌧ � I(u < 0)} .

It is a basic result that the coe�cients of standard quantile regression for Q
Y |x(⌧ |x) can be es-

timated by minimizing
P

n

i=1 ⇢⌧{yi � xT

i

�(⌧)} (Koenker, 2005, Chap. 1). This fact can be used

to define the two-step procedure for estimating {�(⌧),�(⌧)}, for a given ⌧ , reported below for a

general transformation g.

1. For a given value � = �(⌧), obtain the constrained estimate of b�
�

(⌧) as

b�
�

(⌧) = argmin
�

nX

i=1

⇢
⌧

�
g�1(y

i

,�)� xT

i

�
 

(5)

2. Select the transformation parameter b�(⌧) such that

b�(⌧) = argmin
�

nX

i=1

⇢
⌧

h
y
i

� g{xT

i

b�
�

(⌧),�}
i

(6)

The final estimate of �(⌧) is then given by b�(⌧) = b�b
�(⌧).

The crucial point of the above algorithm is that both Step 1. and 2. are rather simple to

implement. Indeed, (5) amounts to a standard linear quantile regression with response values

given by g�1(y
i

,�), whereas (6) only requires the evaluation of the objective function over a grid

of points for �. As noted by Fitzenberger et al. (2009, p. 163), when the Box-Cox transformation

is used it typically su�ces to consider the interval [�1.5, 2] as set of possible values for �(⌧).

3.3 Alternative transformations

The Box-Cox transformation (3) is a natural choice for g�1
{·,�(⌧)}, but it is not totally free of

pitfalls. They are essentially two: (i) the method requires the response variable to be strictly
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positive; (ii) the inverse Box-Cox transformation may not be defined for all the observations and

for every value �(⌧) of interest. The first problem is not an issue when the response variable

corresponds to energy level, like for the data considered here, but it prevents the usage of the

method for monitoring relative changes or other transformed variables. The second problem

arises when the condition

� xT b�
�

(⌧) + 1 > 0 , (7)

deriving from (4) and arising at Step 2. of the estimation algorithm, is not fulfilled. The problem

is less serious than it may seem, as one could decide that those values of � for which the condition

(7) fails to be satisfied for all the data points are ruled out by the data or, alternatively, the

procedure proposed by Fitzenberger et al. (2009) could be employed. The latter solution requires

to select an interval [�,�] for which the condition (7) holds for all the data points, and then solve

for b�(⌧) in (6) by restricting the search to such interval.

Even if the limitations of the Box-Cox transformation do not appear serious enough to prevent

its utilization in (2), nonetheless some alternatives that may be slightly preferable do exist, and

will be introduced here. The first one is the transformation introduced in Yeo and Johnson (2000),

that has gained some popularity in applied statistics (e.g Yee, 2004). Usage of the Yeo-Johnson

transformation as an alternative to (3) gives

g�1(y,�) =

8
>>>>>><

>>>>>>:

{(y + 1)� � 1}/� if y � 0,� 6= 0

log(y + 1) if y � 0,� = 0

�{(1� y)2��

� 1}/(2� �) if y < 0,� 6= 2

� log(1� y) if y < 0,� = 2 .

(8)

As well described in Yeo and Johnson (2000) and Yee (2004), the transformation is symmetric

in the first argument, and for positive y it amounts to a shifted Box-Cox transformation. The

inversion formula gives the corresponding specification for the quantiles of the response variable

Q
Y |x(⌧ |x) =

8
>>>>>><

>>>>>>:

{�(⌧) xT�(⌧) + 1}1/�(⌧) � 1 if xT�(⌧) � 0,�(⌧) 6= 0

exp{xT�(⌧)}� 1 if xT�(⌧) � 0,�(⌧) = 0

1�
⇥
1� xT�(⌧){2� �(⌧)}

⇤1/{2��(⌧)}
if xT�(⌧) < 0,�(⌧) 6= 2

1� exp{�xT�(⌧)} if xT�(⌧) < 0,�(⌧) = 2

(9)

The Yeo-Johnson transformation is a good proposal for replacing the Box-Cox transformation

in the method sketched in §3.1. First, the transformation (8) is defined on the entire real line.

Secondly, provided that �(⌧) is selected in the interval [�2, 2], the existence of the inverse formula
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(9) may be an issue only for xT�(⌧) � 0 and � < 0, whereas for the Box-Cox transformation the

condition (7) may not hold also for some instances with xT�(⌧) < 0 and � > 0.

A further possibility is given by the dual power transformation proposed by Yang (2006). Like

the Box-Cox transformation, the corresponding function g�1(y,�) is defined only for y > 0. The

expressions replacing (3) and (4) for such proposal are given by

g�1(y,�) =

8
<

:
(y� � y��)/(2�) if � 6= 0

log(y) if � = 0 ,
(10)

and

Q
Y |x(⌧ |x) =

8
<

:

h
�(⌧) xT�(⌧) +

p
1 + �(⌧)2 {xT�(⌧)}2

i1/�(⌧)
if �(⌧) 6= 0

exp{xT�(⌧)} if �(⌧) = 0 .
(11)

The dual power transformation (10) does not include the identity transformation, and it is sym-

metric in �. Di↵erently from both the Box-Cox and the Yeo-Johnson transformations, there is

never an issue with the existence of (11) for any value of �(⌧) and xT�(⌧). Therefore, also the

dual power transformation can be a sensible proposal for extending the boxplot rule for outlier

labeling using quantile regression, as described in §3.1.

To give a flavor about the method, the results of the application of the boxplot rule adopting

the quantile specification (2) are also included in Figure 2, using the Yeo-Johnson transforma-

tion. For the simulated data, the estimated transformation parameters b�(⌧) are all close to 1

for ⌧ = 0.25, 0.5, 0.75, therefore the resulting fences track very closely those obtained with the

linear specification of quantiles. For the D1 data, we obtain b�(0.25) = 1.38, b�(0.50) = 1.30 and
b�(0.75) = 0.77. The resulting fences are markedly di↵erent from the linear ones, and closer to the

nonparametric ones, though some local di↵erences exist. This seems an appealing result, as the

computational e↵ort of the single-index method is much smaller than that of the nonparametric

method. The accuracy of proposed methodology will be investigated in the next sections.

4 Simulation studies

In order to investigate the properties of the proposed methodology, some simulation studies have

been carried out. In particular, four di↵erent simulation settings were investigated. The case

with a single covariate was considered, and the covariate values were randomly selected (without

replacement) from the observed oxygen levels of the D1 data. For each settings, the two sample

sizes n = 100 and n = 1, 000 were considered, and 5, 000 Monte Carlo replications were performed

for a given sample size of each setting. In broad generality, the design of simulation studies

for outlier labeling is a very challenging task, as there exist endless possibilities for introducing
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outliers in a given model. Here we attempt to focus on somewhat high rates of contaminated

data. Although the resulting designs are probably not totally realistic, they allowed us to study

the masking properties of the various methods. The features of the simulation settings are given

as follows.

i. Uncontaminated normal data. Data for the response variable were generated from the linear

regression model

y
i

= 55 + 0.26 x
i

+ 18 "
i

"
i

⇠ N(0, 1)

where the model parameters were obtained from the model fitted to the D1 data.

ii. Contamination in the error term. Same as Setting i., but the error term for 15% (on the

average) of the observations was replaced by "
i

+ 4 sgn("i).

iii. Mixture of regression lines. Same as Setting i., but a subset of 15% (on the average) of the

observations were generated by a regression line with slope 0.36.

iv. Contamination in the error term for lognormal data. The log response was generated from

the linear regression model

log(y
i

) = 0.13 + 0.81 log(x
i

) + 0.06 "
i

"
i

⇠ N(0, 1)

where once again the model parameters were obtained from the fitted model to the D1 data

on the log scale. A subset of the 10% of the observations (on the average) had their error

term replaced by "
i

+ sgn("i) max(4, |vi|), with v
i

⇠ t(3). Here the logs of covariate values

were taken as equally spaced values in the sample range of log oxygen for the D1 data.

Four di↵erent procedures for outlier labeling where considered, comparing three resistant rules

with a classical one. In particular, two di↵erent versions of the resistant rule (1) based on the

formulation (2) were assessed, considering as the g-transformation both the Yeo-Johnson trans-

formation (9) and the dual power transformation (11). We also included in the experiment the

rule (1) applied without any transformation and adopting a linear specification for the quantiles.

For all the three resistant rules, three di↵erent vales of k were considered, namely k = 1.5, 2.0, 3.0.

Finally, the classical outlier test based on studentized deletion residuals (Cook & Weisberg, 1982,

§2.2) was also considered, with 1% and 5% significant levels, including for the latter also a Bon-

ferroni correction for multiple testing. Notice that the linear regression model was not considered

for the original data, but indeed after transforming the response values using the Yeo-Johnson

transformation (8), selecting the value of � that makes the residuals of the regression as close to

be normally distributed as possible. To this end, some R functions from the car package were

employed (Fox & Weisberg, 2011).
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4.1 Results for Setting i.

The first simulation study is entirely about the swamping properties of the various procedures,

so both the outside rate per observation and the some-outside rate per sample were estimated by

simulation. The results are reported in Table 1.

Table 1: Simulation results under uncontaminated normal data: outside rates expressed in per-

centages for various methods. For the outlier test, k is the significance level. ‘O rate’ is the

outside rate per observation, ‘S rate’ is the some-outside rate per sample.

Algorithm k O rate S rate O rate S rate

n = 100 n = 1000

Resistant (Y-J) 1.5 1.38 67.7 0.76 99.8

2.0 0.47 35.4 0.10 60.8

3.0 0.21 19.6 0.01 6.4

Resistant (Dual) 1.5 1.34 66.8 0.76 99.8

2.0 0.44 33.3 0.10 60.9

3.0 0.19 17.8 0.01 6.4

Resistant (Linear) 1.5 1.17 60.2 0.74 99.6

2.0 0.28 21.5 0.09 56.9

3.0 0.05 4.8 <0.01 0.68

Outlier test 0.05 5.01 100.0 5.00 100.0

0.01 0.98 68.1 1.00 100.0

0.05/n 0.05 4.6 <0.01 4.7

The results for the three resistant procedures are largely comparable, with a slight edge for the

linear specification, which was advantaged by the simulation scenario. For what concerns the

outside rate per observation, the resistant procedures o↵er a good protection even with k = 1.5,

for which for n = 100 the rate is around 1%. Only the choice k = 3.0 o↵er a strong protection

against swamping at the sample-wise level. However, the choice k = 2.0 does o↵er some protection

at the sample-wise level. Indeed, the some-outside rates per sample for the three resistant methods

with k = 2.0 are even better than the results for the univariate rule with k = 1.5, and the latter

choice was deemed as satisfactory by Hoaglin et al. (1986, Table 2). Even the results for the

three resistant rules proposed here with k = 1.5 are not terrible for n = 100 when compared

with the univariate results. Finally, the results for the outlier test are totally as expected. When

the 1% significance level is adopted, the swamping properties of the test are roughly similar to
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those of the resistant rules with k = 1.5. The Bonferroni adjustment gives the best performances,

and they are roughly not so di↵erent from the results obtained with the resistance rules with

k = 3.0. We notice in passing that modern theory of multiple testing, starting from the seminal

contribution of Benjamini and Hochberg (1995), would o↵er some more satisfactory alternatives

than the Bonferroni adjustment to be used in conjunction with the classical outlier test; see, for

instance, Cerioli and Farcomeni (2011) and the references therein. At any rate, rather than a

doable alternative, the Bonferroni-adjusted test is included here as a sort of extreme benchmark,

useful for making a comparison with the resistant rules with k = 3.0.

4.2 Results for Setting ii.

This setting has a sizable percentage of outliers, which are generally well separated from the bulk

of the data. The results for the various methods are reported in Table 2. The three resistant rules

provide quite similar results, which di↵er instead from those of the classical outlier test. The most

noticeable trend is that the resistant rules with k = 1.5 are generally quite e↵ective in labelling

the outliers, without losing much in terms of false detections, which are generally low for all the

methods. The resistant rules with k = 2.0 are less e↵ective, though they perform much better than

the resistant rules with k = 3.0. The classical outlier tests are much more a↵ected by masking,

and actually only the test with significance level equal to 0.05 is able to identify around the 80%

of the outliers. The Bonferroni-adjusted test is overwhelmingly conservative. In this respect, the

resistant rules with k = 3.0 are less conservative, despite the similar behavior for what concerns

swamping noted in Setting i.

4.3 Results for Setting iii.

The outliers for this setting are generally more overlapping than those of Setting ii., and for this

reason this is a more challenging scenario. In fact, the results for this setting, reported in Table

3, are less good for the resistant rules with k = 1.5, but only slightly so. Once again, the three

resistant rules perform quite similarly, and they greatly outperform the classical outlier test, which

provides very little control over outlier masking.

4.4 Results for Setting iv.

This setting was designed for obtaining a situation where the issue about converging fences noticed

for the resistant rule with linear conditional quantiles for the D1 data could occur frequently.

Therefore, a certain degree of variance heterogeneity was introduced by generating log-normally

distributed responses. At the same time the percentage of genuine outliers was lowered, as the

14



Table 2: Simulation results under Setting ii., rates expressed in percentages for various methods.

For the outlier test, k is the significance level. ‘O rate’ is the outside rate per observation, True

detection and False detection are computed observation-wise.

Algorithm k O rate True False O rate True False

detection detection detection detection

n = 100 n = 1000

Resistant (Y-J) 1.5 14.3 93.6 0.51 15.1 99.6 0.13

2.0 10.5 71.4 0.23 13.0 86.9 0.02

3.0 2.5 17.1 0.16 1.4 9.5 0.01

Resistant (Dual) 1.5 14.3 93.9 0.50 15.1 99.6 0.16

2.0 10.6 71.9 0.23 13.0 86.9 0.03

3.0 2.5 16.9 0.16 1.4 9.5 0.01

Resistant (Linear) 1.5 14.4 95.1 0.37 15.1 99.9 0.12

2.0 10.6 72.8 0.12 13.1 87.5 0.01

3.0 2.3 16.4 0.05 1.4 9.3 <0.01

Outlier test 0.05 11.6 80.6 0.03 13.5 90.2 0.01

0.01 3.0 23.7 <0.01 2.6 17.5 <0.01

0.05/n 0.1 1.1 0.00 <0.01 <0.01 0.00

log-normal distribution would tend to generate some outliers in any case, though such outliers were

not considered as such in computing the detection rates. Indeed, here some di↵erence between

the resistant rules based on the method of Section 3 and those based on the linear specification

come out, showing the higher adaptive nature of the methodology which introduces the additional

transformation parameters �(⌧). Like in the previous setting, the classical outlier test performs

poorly.
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Table 3: Simulation results under Setting iii., rates expressed in percentages for various methods.

For the outlier test, k is the significance level. ‘O rate’ is the outside rate per observation, True

detection and False detection are computed observation-wise.

Algorithm k O rate True False O rate True False

detection detection detection detection

n = 100 n = 1000

Resistant (Y-J) 1.5 12.8 85.2 0.52 14.3 94.8 0.13

2.0 10.2 70.2 0.24 12.4 82.0 0.02

3.0 4.3 31.0 0.17 4.4 29.4 0.01

Resistant (Dual) 1.5 13.0 86.1 0.51 14.3 94.8 0.13

2.0 10.3 70.9 0.24 12.3 82.1 0.02

3.0 4.3 30.8 0.17 4.4 29.4 0.01

Resistant (Linear) 1.5 13.1 87.7 0.40 14.3 95.0 0.11

2.0 10.4 72.5 0.16 12.3 82.5 0.01

3.0 4.3 31.2 0.09 4.4 29.6 <0.01

Outlier test 0.05 8.4 52.6 1.36 9.1 58.3 0.53

0.01 1.6 11.4 0.32 1.4 7.9 0.27

0.05/n 0.04 0.40 0.01 0.09 0.10 0.02
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Table 4: Simulation results under Setting iv., rates expressed in percentages for various methods.

For the outlier test, k is the significance level. ‘O rate’ is the outside rate per observation, True

detection and False detection are computed observation-wise.

Algorithm k O rate True False O rate True False

detection detection detection detection

n = 100 n = 1000

Resistant (Y-J) 1.5 9.0 83.7 0.81 10.2 99.2 0.32

2.0 5.3 53.2 0.24 5.7 57.3 0.04

3.0 1.1 11.6 0.05 0.2 2.0 <0.01

Resistant (Dual) 1.5 9.0 83.7 0.81 10.2 99.2 0.32

2.0 5.3 53.2 0.24 5.7 57.3 0.04

3.0 1.1 11.6 0.05 0.2 2.0 <0.01

Resistant (Linear) 1.5 7.9 74.5 0.62 9.0 87.5 0.28

2.0 4.3 43.5 0.13 4.4 44.1 0.03

3.0 0.7 7.6 0.01 0.1 1.2 <0.01

Outlier test 0.05 6.3 50.8 1.48 5.9 49.6 1.06

0.01 3.6 34.6 0.31 3.7 35.2 0.17

0.05/n 1.1 12.3 0.02 0.2 2.3 <0.01
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5 Application to some real data sets

In the following, the application of the methodology to some data sets will be illustrated, in order

to focus on some points of particular interest.

5.1 D2 data

The first data set, named here as the D2 data set, is somewhat similar to the D1 data, but of

smaller size. It includes a sample of n = 208 observations about the same two variables, O2 level

and energy level. Here the assumption of constant variability is substantially tenable, and outlier

labeling based on the procedure (2) with linear specification of the conditional quantiles provides

results similar to those of the single-index approach. Two things are worth noting about this

example. The first one is that the approach based on the nonparametric specification of quantiles

requires a substantial amount of trial-and-error for data sets of this size, and actually in order to

avoid too many wiggles in the resulting fences we had to set the smoothness parameter to a very

large value (e.g. 800 for the results in Figure 3). Furthermore, this examples confirms once again

that classical procedures based on least-squares are unsuitable for outlier labeling, even when the

response variable is properly transformed. To this end, the right panel of Figure 3 display the nor-

mal quantile-quantile plot for the studentized residuals of the simple linear regression model where

the response variable is given by the Yeo-Johnson transformation. It is apparent that the residuals

from the linear regression are rather far from the theoretical t(⌫) distribution with ⌫ = 205, which

is very close to normality, suggesting that finding a normalizing transformation for the response

is quite challenging for data of this type. Masking is substantial when the classical outlier test is

adopted. Indeed, the test flags a number of potential outliers comparable with that labelled the

resistant rules with k = 2.0 only when a significance level equal to 0.05 is chosen. Yet, such a

significance level o↵ers very little protection against swamping, as seen in the simulation study of

§4.1.

5.2 D3 data

The second data set includes data from a sample of size n = 4998, including data on the energy

level and the CH4 level, for two di↵erent process practices. The data are highly unbalanced,

with only 23 points for one of the two practices. For such small group, the estimated coe�cient

of CH4 in the linear quantile regression for the energy level is very close to zero for any value
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Figure 3: D2 data set. Left panel: Plot of energy level against O2 level. Fences based on quantile

regression computed with k = 2.0 are superimposed, for linear quantiles (solid lines), nonpara-

metric quantiles (dashed lines) and for the single-index method based on the Yeo-Johnson trans-

formation (dotted). Right panel: normal quantile-quantile plot for studentized deletion residuals

of the linear model for transformed response.

of ⌧ , not attaining statistical significance at any reasonable level. In such case the single index

method is not appropriate, as the transformation parameter �(⌧) is barely identifiable. The left

panel of Figure 4 displays the results, showing that the fences from the single index method are

totally overlapping with those of the linear specification for the conditional quantiles. In such

case, the most sensible approach would be to monitor the energy level alone, without considering

any regression model.

Things are rather di↵erent for the large portion of data corresponding to the other process

practice. Here the conditional distribution of the energy level depends strongly on the CH4 level,

and outlier labeling based on quantile regression is meaningful. The resistant rule based on the

linear specification of the conditional quantiles is not the best choice, as quantile crossing occurs,

causing the fences to cross as well. The single-index method is more satisfactory, as the fences

diverge rather than converge, resulting in a more conservative labeling of the observations with

large values of CH4. The resistant rule based on the nonparametric specification of the quantiles

provides perhaps the best outcome, though once again a careful choice of the smoothness parameter

is required. The nice-looking fences reported in the right panel of Figure 4 were obtained with

the smoothness parameter for the qss function set to 200. Interesting enough, with a value of the

19



smoothness parameter around 150 the resulting fences would be quite similar to those obtained

with the single-index method.
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Figure 4: D3 data set. Left panel: Plot of energy level against CH4 level, for the first process

practice. Fences based on quantile regression computed with k = 1.5 are superimposed, for linear

quantiles (solid lines) and for the single-index method based on the Yeo-Johnson transformation

(dotted). Right panel: Plot of energy level against CH4 level, for the second process practice.

Fences based on quantile regression computed with k = 1.5 are superimposed, for linear quantiles

(solid lines), nonparametric quantiles (dashed lines) and for the single-index method based on the

Yeo-Johnson transformation (dotted).

5.3 D4 data

The last data set is similar to the previous one, but it includes data from four di↵erent process

practices, and it will be used here to illustrate the possibility of extending outlier labeling to some

multiple regression settings. The data include observations on a sample of size n = 340, with data

on the energy level and the CH4 level for four di↵erent process practices. The group sizes for the

four di↵erent practices are 199, 2, 7 and 132 respectively. The sample size for Practice 1 and 4

are large enough to permit a separate analysis. For Practice 1 the results for two resistant rules

are reported in the left panel of Figure 5, showing that in this case the single-index method seems
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to be slightly preferable over the linear specification. The sample sizes for Practice 2 and 3 are so

small that we could ignore them, but it is actually possible to consider all the observations together

by a multiple regression specification. Therefore, as a linear predictor for the i-th observation we

take

xT

i

�(⌧) = �0(⌧) + d
i1�1(⌧) + d

i2�2(⌧) + d
i4�3(⌧) + z

i

�4(⌧) + z
i

d
i1�5(⌧) + z

i

d
i4�6(⌧) (12)

where d
ij

, j = 2, 3, 4 are the dummy variables employed for coding the process practice, and

z
i

the value of the CH4 level. The results of the application of the resistant rule (1) with the

single-index method and the linear method for the conditional quantiles are reported in the right

panel of Figure 5. Though both methods flag a small subset of observations as outliers, the linear

method flags also a few observations that are not flagged by the single-index method, similarly

to what happens for the data of Practice 1 only. At any rate, for either method the multivariate

extension (12) provides results similar to what obtained by considering the data of Practice 1 and

4 separately, suggesting that multivariate versions of the method may be e↵ective.
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Figure 5: D4 data set. Left panel: Plot of energy level against CH4 level, for Practice 1. Fences

based on quantile regression computed with k = 1.5 are superimposed, for linear quantiles (solid

lines) and for the single-index method based on the Yeo-Johnson transformation (dotted). Right

panel: Plot of energy level against CH4 level, for all practices. Observations flagged as potential

outliers by the resistant rule with k = 1.5 extended to multiple regression are highlighted, for the

single index method (’x’) and the linear specification of conditional quantiles (’+’).
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6 Discussion

The purpose of this paper is to show that the boxplot rule for outlier labeling can be extended

to the regression setting within the framework of quantile regression, and that by introducing an

additional transformation parameter some additional flexibility can be gained. Indeed, several

results obtained in the literature for the univariate setting can be transferred to the regression

setting. We mention in particular the fact that resistant rules based on quantile regression are

generally well resistant to masking, especially with choices of the constant k such as k = 1.5 or

k = 2.0. Good protection against swamping, as the sample-wise level, is instead provided by

larger values of k, such as k = 3.0. Similarly to what noted by Hoaglin et al. (1986) for the

univariate case, such choice is rather conservative, and it can be seen as a supplementary rule for

joint usage with the basic resistant rules that have k = 1.5 or k = 2.0. A recommendable strategy

is probably given by the application of the resistant rule with di↵erent values of k. We also notice

that variations of the resistant rule, such as extension of the median rule by Carling (2000) or the

rule based on semi-interquartile ranges proposed by Kimber (1990), provide performances in the

simulation studies very similar to those of the basic method studied here, so that their usage was

not investigated further.

In this paper we endorse an informal approach to outlier screening, for which the resistant

rules extending the boxplot rule are indeed well suited. In our opinion, such informal approach is

the most suitable to the ill-posed nature of the outlier problem, leaving the final decision about

the nature of the flagged point to the expert of the data-generating process. However, some

researchers may prefer a more formal way of operating. In such case, theory of multiple testing

might be adapted, within a parametric or a semiparametric setting, and it seems likely that

the resulting methodology could provide a better control of swamping than the resistant rules

employed here.

The methodology developed here has some potential for being useful in many settings, but

it has been motivated by the analysis of steelmaking process data. We have focused on energy

consumption for the sake of clarity, but the methodology could be used for other process variables

as well. At any rate, an appealing feature of the methodology is its simplicity, as the method is

entirely based on linear quantile regression, iterated over a grid of points for the transformation

parameter. Implementation of linear quantile regression is possible by a simple linear programming

software, so that the methodology can be implemented not only within statistical software, but

also within commonly used spreadsheets that are able to solve linear programming problems. In

many applied settings, this makes the proposed methods preferable to more sophisticated nonlinear

quantile regression methods, including nonparametric versions.

Two things seem worth stressing about the single-index method proposed here. The first one
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is that we could not find any substantial di↵erence among the various transformations employed,

so that our preference is for the Yeo-Johnson and the dual power transformations over the Box-

Cox transformation, for the theoretical reasons given in Section 3. The second one, and perhaps

more important, is that although the linear specification of quantiles may be occasionally a✏icted

by quantile crossing, which is aesthetically unpleasant at best, the quantitative consequences of

such problem are typically limited, and indeed in the simulation experiments the resistant rule

with linear quantiles provides quite acceptable performances. All in all, though the single-index

method seems preferable, the linear specification of the conditional quantiles can still provide

useful results, at the lowest computational price.

This article focuses mainly on the bivariate setting, with a single explanatory variable. The

multivariate setting has been only touched in passing, and it would require a more thorough analy-

sis. For the setting of interest here, visualization of the fences was deemed as an important feature

of the method. Such visualization becomes impossible, or at best quite unpractical, with more

than one covariate, therefore some alternative approaches would be required. An investigation

along the lines of Eo et al. (2014), who proposed a specific score for the identification of outliers

in multivariate regression settings, could be of some interest.
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