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Abstract

In this paper, we reconstruct the main developments of the the-
ory of noncooperative oligopoly in general equilibrium, by focusing
on the analysis of three prototypical models: the model of Cournot-
Walras equilibrium of Codognato and Gabszewicz (1991); the model
of Cournot-Nash equilibrium originally proposed by Lloyd S. Shapley
and known as window model; the model of Cournot-Walras equilib-
rium of Busetto et al. (2008). We establish, in a systematic way, the
relationship between the three notions of equilibrium proposed in these
models and the notion of Walras equilibrium. Then, we investigate the
relationships among those three notions of equilibrium.
Journal of Economic Literature Classification Numbers: C72, D51.

1 Introduction

In this paper, we propose a reconstruction of the theory of noncoopera-
tive oligopoly in general equilibrium. This theory has been developed along
two main lines of research. The first is the Cournot-Walras approach, initi-
ated, in the context of economies with production, by Gabszewicz and Vial
(1972), and, in the case of exchange economies, by Codognato and Gab-
szewicz (1991) (see also Codognato and Gabszewicz (1993), d’Aspremont et
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al. (1997), Gabszewicz and Michel (1997), Shitovitz (1997), Lahmandi-Ayed
(2001), Bonnisseau and Florig (2003), Julien and Tricou (1995), Busetto et
al. (2008), among others). The second is the noncooperative market game
approach, initiated by Shapley and Shubik (1977) (see also Dubey and Shu-
bik (1977), Postlewaite and Schmeidler (1978), Okuno et al. (1980), Mas-
Colell (1982), Sahi and Yao (1989), Amir et al. (1990), Peck et al. (1992),
Dubey and Shapley (1994), Busetto et al. (2011), among others).

A relevant part of the work elaborated within these two lines of research,
and most of the interactions between them, have been concerned with the
issue of the strategic foundation of the noncooperative oligopolistic behavior
in general equilibrium. As stressed by Okuno et al. (1980), an appropriate
model of oligopoly in general equilibrium should give a formal explanation
of “[...] either perfectly or imperfectly competitive behavior may emerge
endogenously [...], depending on the characteristics of the agent and his
place in the economy” (see p. 22).

In this paper, we reconsider this issue by concentrating on three proto-
typical models proposed in the literature, which are, in our view, the most
representative of the two lines of research: the model of Codognato and Gab-
szewicz (1991), based on a concept of Cournot-Walras equilibrium which we
will call, following Gabszewicz and Michel (1997), homogeneous oligopoly
equilibrium; the model of Cournot-Nash equilibrium originally proposed by
Lloyd S. Shapley and further analyzed by Sahi and Yao (1989) and Busetto et
al. (2011); the model of Cournot-Walras equilibrium introduced by Busetto
et al. (2008). All these models were originally formalized in a one-stage
setting.

We first establish, in a systematic way, the relationship of the three
concepts of equilibrium proposed in these models with the notion of Walras
equilibrium; to this end, we consider, according to Aumann (1964), limit ex-
change economies, i.e., markets with an atomless continuum of traders and,
according to Shitovitz (1973), mixed exchange economies, i.e., markets with
a continuum of traders and atoms. Second, we investigate the relationship
among those three concepts of equilibrium.

We reach the conclusion that the three notions of equilibrium are all
distinct. In particular, we show that the notion of Cournot-Walras equi-
librium introduced by Codognato and Gabszewicz (1991) differs from the
notion proposed by Busetto et al. (2008). Moreover, we argue that the
Shapley’s window model with an atomless continuum of traders and atoms
(see Busetto et al. (2011)) is an autonomous description of the one-shot
oligopolistic interaction in a general equilibrium framework, since even its
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closest Cournot-Walras variant, proposed by Busetto et al. (2008), may
generate different equilibria. At the state of the art, it is the only model of
noncooperative oligopoly which, according to Okuno et al. (1980), provides
an endogenous explanation of the perfectly and imperfectly competitive be-
havior of agents in a one-stage setting.

As regards the Cournot-Walras approach, instead, the model of Busetto
et al. (2008) turns out to be a well-founded representation of the non-
cooperative oligopolistic interaction in general equilibrium, but only in a
two-stage setting. This makes clear a fundamental characteristic of the
Cournot-Walras equilibrium concept, namely its two-stage nature, which
had remained implicit in all the previous models elaborated within this ap-
proach.

The paper is organized as follows. In Section 2, we build the mathe-
matical model of a pure exchange economy where the space of traders is
represented by a measure space with atoms and an atomless part. This
model allows us to analyze, within a unifying structure, the different models
proposed in the literature on noncooperative oligopoly in general equilib-
rium. In Sections 3, 4, and 5, we introduce, respectively, the concept of
homogeneous oligopoly equilibrium of Codognato and Gabszewicz (1991),
the concept of Cournot-Nash equilibrium of the Shapley’s window model
developed by Busetto et al. (2011), and the concept of Cournot-Walras
equilibrium of Busetto et al. (2008), and we analyze the relationship of each
of them with the notion of Walras equilibrium. In Section 6, we compare
the three different concepts of equilibrium.

2 The mathematical model

We consider a pure exchange economy with large traders, represented as
atoms, and small traders, represented by an atomless part. The space of
traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) < ∞. This implies that the measure space
(T, T , µ) contains at most countably many atoms. Let T1 denote the set of
atoms and T0 = T \ T1 the atomless part of T . A null set of traders is a set
of measure 0. Null sets of traders are systematically ignored throughout the
paper. Thus, a statement asserted for “each” trader in a certain set is to
be understood to hold for all such traders except possibly for a null set of
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traders. The word “integrable” is to be understood in the sense of Lebesgue.
In the exchange economy, there are l different commodities. A com-

modity bundle is a point in Rl
+. An assignment (of commodity bundles

to traders) is an integrable function x: T → Rl
+. There is a fixed initial

assignment w, satisfying the following assumption.

Assumption 1. w(t) > 0, for each t ∈ T ,
∫
T w(t) dµ À 0.

An allocation is an assignment x for which
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R

l
+ → R, satisfying the following assumptions.

Assumption 2. ut : R
l
+ → R is continuous, strongly monotone, and quasi-

concave for each t ∈ T .

Let B(Rl
+) denote the Borel σ-algebra of Rl

+. Moreover, let T ⊗B
denote the σ-algebra generated by the sets E×F , where E ∈ T and F ∈ B.
Assumption 3. u : T × Rl

+ → R, given by u(t, x) = ut(x), for each t ∈ T
and for each x ∈ Rl

+, is T
⊗B-measurable.

A price vector is a vector p ∈ Rl
+. According to Aumann (1966), we

define, for each p ∈ Rl
+, a correspondence ∆p : T → P(Rl) such that,

for each t ∈ T , ∆p(t) = {x ∈ Rl
+ : px ≤ pw(t)}, a correspondence Γp :

T → P(Rl) such that, for each t ∈ T , Γp(t) = {x ∈ Rl
+ : for all y ∈

∆p(t), ut(x) ≥ ut(y)}, and finally a correspondence Xp : T → P(Rl) such
that, for each t ∈ T , Xp(t) = ∆p(t) ∩ Γp(t).

A Walras equilibrium is a pair (p∗,x∗), consisting of a price vector p∗

and an allocation x∗, such that, for all t ∈ T , x∗(t) ∈ Xp∗(t).
The following proposition, due to Busetto et al. (2011), generalizes a

result previously used by Aumann (1966) to prove his existence theorem.

Proposition 1. Under Assumptions 1, 2, and 3, for each p ∈ Rl
++, there

exists an integrable function x(·, p) : T → Rl
+ such that, for each t ∈ T ,

x(t, p) ∈ Xp(t).

3 Homogeneous oligopoly equilibrium

We first consider the notion of Cournot-Walras equilibrium for exchange
economies proposed by Codognato and Gabszewicz (1991). The concept of
Cournot-Walras equilibrium was originally introduced by Gabszewicz and

4



Vial (1972) in the framework of an economy with production. These au-
thors were already aware that their notion of equilibrium raised some theo-
retical difficulties, as it depends on the rule chosen to normalize prices and
profit maximization may not be a rational objective of firms. The reformu-
lation of the Cournot-Walras equilibrium for exchange economies proposed
by Codognato and Gabszewicz (1991) made it possible to overcome these
problems, since it does not depend on price normalization and replaces profit
maximization with utility maximization. This concept was generalized by
Gabszewicz and Michel (1997) by means of a notion of oligopoly equilibrium
for exchange economies (see also d’Aspremont et al. (1997), for another gen-
eralization of the concept). More precisely, the Cournot-Walras equilibrium
introduced by Codognato and Gabszewicz (1991) corresponds to the case of
“homogeneous oligopoly” equilibrium in the framework developed by Gab-
szewicz and Michel (1997). We adopt here this expression, to distinguish this
concept of Cournot-Walras equilibrium from the other proposed by Busetto
et al. (2008).

In order to formulate the concept of homogeneous oligopoly equilibrium,
we assume that the space of traders is as in Section 2, while the initial
assignment of atoms is specified as follows:

w(t) = (w1(t), 0, . . . , 0),

for each t ∈ T1.
Moreover, we need to introduce the following restriction of Assumption

2.

Assumption 2′. ut : Rl
+ → R is continuous, strongly monotone, and

strictly quasi-concave, for each t ∈ T .

Under Assumption 2′, for each p ∈ Rl
++, we define the small traders’

Walrasian demands as a function x0(·, p) : T0 → Rl
+, such that, for each

t ∈ T0, x
0(t, p) = Xp(t). It is also possible to show the following proposition.

Proposition 2. Under Assumptions 1, 2′, and 3, the function x0(·, p) is
integrable, for each p ∈ Rl

++.

Proof. By Proposition 1, for each p ∈ Rl
++, there exists an integrable

function xp : T → Rl
+ such that, for each t ∈ T , x(t, p) = Xp(t). Then, for

each p ∈ Rl
++, x

0(·, p) is integrable as it is a restriction of the integrable
function x(·, p) to T0.

Consider now the atoms’ strategies. A strategy correspondence is a
correspondence Y : T1 → P(R) such that, for each t ∈ T1, Y(t) = {y ∈ R :
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0 ≤ y ≤ w1(t)}. A strategy selection is an integrable function y : T1 → R
such that, for each t ∈ T1, y(t) ∈ Y(t). For each t ∈ T1, y(t) represents the
amount of commodity 1 that trader t offers in the market. We denote by
y \ y(t) a strategy selection obtained by replacing y(t) in y with y ∈ Y(t).
With a slight abuse of notation, y \ y(t) will also represent the value of the
strategy selection y \ y(t) at t.

Given a price vector p ∈ Rl
++ and a strategy selection y, let x1(·,y(·), p) :

T1 → Rl
+ denote a function such that, for each t ∈ T1, x11(t,y(t), p) =

w1(t)− y(t) and (x12(t,y(t), p), . . . ,x1l(t,y(t), p)) is, under Assumption 2′,
the unique solution to the problem

max
x2,...,xl

ut(w
1(t)− y(t), x2, . . . , xl) such that

l∑

j=2

pjxj = p1y(t).

Let π(y) denote the correspondence which associates, with each strategy
selection y, the set of the price vectors such that

∫

T0

x01(t, p) dµ =

∫

T0

w01(t) dµ+

∫

T1

y(t) dµ,

∫

T0

x0j(t, p) dµ+

∫

T1

x1j(t,y(t), p) dµ =

∫

T0

w0j(t) dµ,

j = 2, . . . , l. We assume that, for each y, π(y) 6= ∅ and π(y) ⊂ Rl
++. A

price selection p(y) is a function which associates, with each y, a price vector
p ∈ π(y).

Given a strategy selection y, by the structure of the traders’ measure
space, Proposition 2, and the atoms’ maximization problem, it is straight-
forward to show that the function x(t) such that x(t) = x0(t, p(y)), for each
t ∈ T0, and x(t) = x1(t,y(t), p(y)), for each t ∈ T1, is an allocation.

At this stage, we are able to define the concept of homogeneous oligopoly
equilibrium.

Definition 1. A pair (y̌, x̌), consisting of a strategy selection y̌ and an
allocation x̌ such that x̌(t) = x0(t, p(y̌)), for each t ∈ T0, and x̌(t) =
x1(t, y̌(t), p(y̌)), for each t ∈ T1, is a homogeneous oligopoly equilibrium,
with respect to a price selection p(y), if ut(x

1(t, y̌(t), p(y̌))) ≥ ut(x
1(t, y̌ \

y(t), p(y̌ \ y(t)))), for each y ∈ Y(t) and for each t ∈ T1.

Let us consider now the relationship between the concepts of homo-
geneous oligopoly and Walras equilibrium. As is well known, within the
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Cournotian tradition (see Cournot (1838)), it has been established that the
Cournot equilibrium approaches the competitive equilibrium as the num-
ber of oligopolists increases. Codognato and Gabszewicz (1993) confirmed
this result. By considering a limit exchange economy à la Aumann, they
were able to show that the set of the homogeneous oligopoly equilibrium
allocations coincides with the set of the Walras equilibrium allocations.

On the other hand, they provided an example showing that this result
no longer holds in an exchange economy à la Shitovitz, where strategic
traders are represented as atoms. More precisely, by means of this exam-
ple they proved that, within their Cournot-Walras structure, it is possible
to avoid a counterintuitive result obtained by Shitovitz (1973) in the coop-
erative context: in his Theorem B, this author proved that the core allo-
cations of a mixed exchange economy are Walrasian when the atoms have
the same endowments and preferences (but not necessarily the same mea-
sure). Codognato and Gabszewicz (1993) considered an exchange economy
with two identical atoms facing an atomless continuum of small traders and
showed that, in this economy, there is a homogeneous oligopoly equilibrium
allocation which is not Walrasian.

4 Cournot-Nash equilibrium

The model described in the previous section shares, with the whole Cournot-
Walras approach, a fundamental problem, stressed, in particular, by Okuno
et al. (1980): it does not explain why a certain agent behaves strategically
rather than competitively.

Taking inspiration from the cooperative approach to oligopoly intro-
duced by Shitovitz (1973), Okuno et al. (1980) proposed a foundation of
agents’ behavior based on the Cournot-Nash equilibria of a model of si-
multaneous, noncooperative exchange between large traders, represented as
atoms, and small traders, represented by an atomless sector. Their model
belongs to the line of research initiated by Shapley and Shubik (1977). In
their framework, all agents interact strategically, but only part of them turns
out to be price taker while the others have influence on prices, depending on
their characteristics and their weight in the economy. Okuno et al. (1980)
were also the first who showed that the unsatisfying result obtained by Shi-
tovitz (1973) with his Theorem B could be avoided in the noncooperative
context: they gave both an example and a proposition showing that, in their
Cournot-Nash equilibrium model, the small traders always have a negligible
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influence on prices, while the large traders keep their strategic power even
when their behavior turns out to be Walrasian in the cooperative framework
considered by Shitovitz (1973). Nevertheless, the model they used incorpo-
rates very special hypotheses, since it considers only two commodities that
no trader can simultaneously buy and sell.

In this section, we show a similar result within the more general model
of simultaneous, noncooperative exchange originally proposed by Lloyd S.
Shapley and subsequently analyzed by Sahi and Yao (1989) in the case of
exchange economies with a finite number of traders, Codognato and Ghosal
(2000) in the case of limit exchange economies, and Busetto et al. (2011)
in the case of mixed exchange economies à la Shitovitz. We formalize the
model following Busetto et al. (2011).

We assume that the space of traders is as in Section 2. Moreover, we
introduce the following further assumption (see also Sahi and Yao (1989)).

Assumption 4. There are at least two traders in T1 for whom w(t) À 0; ut
is continuously differentiable in Rl

++; {x ∈ Rl
+ : ut(x) = ut(w(t))} ⊂ Rl

++.

Consider now the traders’ strategies. Let b ∈ Rl2 be a vector such that
b = (b11, b12, . . . , bll−1, bll). A strategy correspondence is a correspondence
B : T → P(Rl2) such that, for each t ∈ T , B(t) = {b ∈ Rl2 : bij ≥ 0, i, j =

1, . . . , l;
∑l

j=1 bij ≤ wi(t), i = 1, . . . , l}. A strategy selection is an integrable

function b : T → Rl2 , such that, for each t ∈ T , b(t) ∈ B(t). For each t ∈ T ,
bij(t), i, j = 1, . . . , l, represents the amount of commodity i that trader t
offers in exchange for commodity j. Given a strategy selection b, we define
the aggregate matrix B̄ = (

∫
T bij(t) dµ). Moreover, we denote by b \ b(t)

a strategy selection obtained by replacing b(t) in b with b ∈ B(t). With a
slight abuse of notation, b \ b(t) will also represent the value of the strategy
selection b \ b(t) at t.

Then, we introduce two further definitions (see Sahi and Yao (1989)).

Definition 2. A nonnegative square matrix A is said to be irreducible if,
for every pair (i, j), with i 6= j, there is a positive integer k = k(i, j) such

that a
(k)
ij > 0, where a

(k)
ij denotes the ij-th entry of the k-th power Ak of A.

Definition 3. Given a strategy selection b, a price vector p is market clear-
ing if

p ∈ Rl
++,

l∑

i=1

pib̄ij = pj(
l∑

i=1

b̄ji), j = 1, . . . , l. (1)
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By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (1) if and only if B̄ is irreducible. Then,
we denote by p : Rl2

+ → Rl
+ a function such that, for each strategy selection

b, p(b) is the unique, up to a scalar multiple, price vector satisfying (1), if
B̄ is irreducible, and p(b) = 0, otherwise.

Given a strategy selection b and a price vector p, consider the assignment
determined as follows:

xj(t,b(t), p) = wj(t)−
l∑

i=1

bji(t) +
l∑

i=1

bij(t)
pi

pj
, if p ∈ Rl

++,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, . . . , l, for each t ∈ T .
According to this rule, given a strategy selection b and the function p(·),

the traders’ final holdings are determined as follows:

x(t) = x(t,b(t), p(b)),

for each t ∈ T . It is straightforward to show that the assignment corre-
sponding to the final holdings is an allocation.

This reformulation of the Shapley’s window model allows us to de-
fine the following concept of Cournot-Nash equilibrium for mixed exchange
economies.

Definition 4. A strategy selection b̂ such that ¯̂B is irreducible is a Cournot-
Nash equilibrium if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b̂ \ b(t), p(b̂ \ b(t)))),
for all b ∈ B(t) and for each t ∈ T .

Busetto et al. (2011) proved that, under Assumptions 1, 2, 3, and 4, there
exists a Cournot-Nash equilibrium b̂. Moreover, Codognato and Ghosal
(2000) showed that, in limit exchange economies, the set of the Cournot-
Nash equilibrium allocations of the Shapley’s model and the set of the Walras
equilibrium allocations coincide. Here, we deal with the question whether,
according to Okuno et al. (1980), this equivalence no longer holds under
the assumptions of Theorem B in Shitovitz (1973): we provide a proposition
and an example showing that, under those assumptions, the small traders
always have a Walrasian price-taking behavior whereas the large traders
have market power even in those circumstances where the core outcome is
competitive.
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Proposition 3. Assumptions 1, 2, 3, and 4, for each strategy selection b
such that B̄ is irreducible and for each t ∈ T0, (i) p(b) = p(b \ b(t)), for all
b ∈ B(t); (ii) x(t, b̂\b(t), p(b\b(t))) ∈ Xp(b)(t), for all b ∈ argmax{ut(x(t, b̂\
b(t), p(b \ b(t)))) : b ∈ B(t)}.
Proof. (i) It is an immediate consequence of Definition 3. (ii) It can be
proved by the same argument used in the proof of part (i) of Theorem 2 in
Codognato and Ghosal (2000).

More precisely, part (i) of Proposition 3 establishes that each small trader
is unable to influence prices and part (ii) that all the best replies of each
small trader attains a point in his Walras demand correspondence.

Example 1. Consider the following specification of an exchange economy
satisfying Assumptions 1, 2, 3, and 4, where l = 2, T1 = {2, 3}, T0 = [0, 1],
w(2) = w(3), u2(x) = u3(x), w(t) = (0, 1), ut(x) = (x1)α(x2)1−α, 0 < α <
1, for each t ∈ T0. Then, if b̂ is a Cournot-Nash equilibrium, the pair (p̂, x̂)
such that p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p̂), for each t ∈ T , is not a Walras
equilibrium.

Proof. Suppose that b̂ is a Cournot-Nash equilibrium and that the pair
(p̂, x̂) such that p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p̂), for all t ∈ T , is a Walras
equilibrium. Clearly, b̂21(t) = α, for each t ∈ T0. At a Nash equilibrium,
the marginal price of each atom must be equal to his marginal rate of sub-
stitution between commodity 1 and commodity 2 (see Okuno et al. (1980)).
This, in turn, at a Walras equilibrium, must be equal to the relative price
of commodity 1 in terms of commodity 2. Consequently, we must have

dx2
dx1

= −p̂2
b̂12(t)

b̂21(t) + α
= −p̂,

for each t ∈ T1. But then, we must also have

b̂21(2) + α

b̂12(2)
=

b̂21(2) + b̂21(3) + α

b̂12(2) + b̂12(3)
=

b̂21(3) + α

b̂12(3)
. (2)

The last equality in (2) holds if and only if b̂21(2) = k(b̂21(3) + α) and
b̂12(2) = kb̂12(3), with k > 0. But then, the first and the last members in
(2) cannot be equal because

k(b̂21(3) + α) + α

kb̂12(3)
6= b̂21(3) + α

b̂12(3)
.

This implies that the pair (p̂, x̂) such that p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p̂),
for each t ∈ T , cannot be a Walras equilibrium.
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Notice that our example provides a result stronger than the proposition
proved by Okuno et al. (1980), since it requires that atoms have not only
the same endowments and preferences but also the same measure.

Proposition 3 and Example 1 clarify that the mixed version of the Shap-
ley’s model introduced in this section is a well-founded model of oligopoly in
general equilibrium as it gives an endogenous explanation of strategic and
competitive behavior. Therefore, it is immune from the criticism by Okuno
et al. (1980).

To conclude this section, let us mention a recent result by Busetto et al.
(2012), on the convergence of the Cournot-Nash equilibrium of the Shapley’s
model to the Walras equilibrium. In the original spirit of Cournot (1838),
these authors replicate only the set of atoms while keeping unchanged the
atomless part of the economy. They show that any convergent sequence
of Cournot-Nash equilibrium allocations of the strategic market game à la
Shapley associated with the partially replicated exchange economies approx-
imates a Walras equilibrium allocation of the original exchange economy.

5 Cournot-Walras equilibrium

In this section, we describe the concept of Cournot-Walras equilibrium in-
troduced by Busetto et al. (2008), which proposes some emendations to
the notion of equilibrium introduced by Codognato and Gabszewicz (1991).
In particular, within the model proposed by these authors, oligopolists are
characterized by a “twofold behavior,” since they act à la Cournot in making
their supply decisions and à la Walras in exchanging commodities. As we
shall see below, in the model of Busetto et al. (2008), oligopolists always
behave à la Cournot. This model can be viewed as a respecification à la
Cournot-Walras of the mixed version of the Shapley’s model presented in
Section 4.

In order to formulate the concept of Cournot-Walras equilibrium, we
assume again that the space of traders is as in Section 2. Moreover, we need
to introduce the following restriction of Assumption 1.

Assumption 1′. w(t) > 0, for each t ∈ T ,
∫
T0

w(t) dµ À 0.

As regards the atomless sector, like in Section 3 we define, under As-
sumption 2′, the Walrasian demands as a function x0(·, p) : T0 → Rl

+ such
that x0(t, p) = Xp(t), for each t ∈ T0.

Consider now the atoms’ strategies. Let e ∈ Rl2 be a vector such that
e = (e11, e12, . . . , ell−1, ell). A strategy correspondence is a correspondence
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E : T1 → P(Rl2) such that, for each t ∈ T1, E(t) = {e ∈ Rl2 : eij ≥
0, i, j = 1, . . . , l;

∑l
j=1 eij ≤ wi(t), i = 1, . . . , l}. A strategy selection is an

integrable function e : T1 → Rl2 such that, for each t ∈ T1, e(t) ∈ E(t).
For each t ∈ T1, eij(t), i, j = 1, . . . , l, represents the amount of commodity
i that trader t offers in exchange for commodity j. We denote by e \ e(t)
a strategy selection obtained by replacing e(t) in e with e ∈ E(t). With a
slight abuse of notation, e \ e(t) will also represent the value of the strategy
selection e \ e(t) at t.

Finally, we denote by π(e) the correspondence which associates, with
each e, the set of the price vectors such that

∫

T0

x0j(t, p) dµ+

l∑

i=1

∫

T1

eij(t) dµ
pi

pj
=

∫

T0

wj(t) dµ+

l∑

i=1

∫

T1

eji(t) dµ, (3)

j = 1, . . . , l.

Assumption 5. For each e, π(e) 6= ∅ and π(e) ⊂ Rl
++.

A price selection p(e) is a function which associates, with each e, a price
vector p ∈ π(e) and is such that p(e′) = p(e′′) if

∫
T1

e′(t) dµ =
∫
T1

e′′(t) dµ.
For each strategy selection e, let x1(·, e(·), p(e)) : T1 → Rl

+ denote a function
such that

x1j(t, e(t), p(e)) = wj(t)−
l∑

i=1

eji(t) +
l∑

i=1

eij(t)
pi(e)

pj(e)
, (4)

j = 1, . . . , l, for each t ∈ T1. Given a strategy selection e, taking into
account the structure of the traders’ measure space, Proposition 2, and
Equation (3), it is straightforward to show that the function x(t) such that
x(t) = x0(t, p(e)), for each t ∈ T0, and x(t) = x1(t, e(t), p(e)), for each
t ∈ T1, is an allocation.

At this stage, we are able to define the concept of Cournot-Walras equi-
librium.

Definition 5. A pair (ẽ, x̃), consisting of a strategy selection ẽ and an
allocation x̃ such that x̃(t) = x0(t, p(ẽ)), for each t ∈ T0, and x̃(t) =
x1(t, ẽ(t), p(ẽ)), for each t ∈ T1, is a Cournot-Walras equilibrium, with re-
spect to a price selection p(e), if

ut(x
1(t, ẽ(t), p(ẽ))) ≥ ut(x

1(t, ẽ \ e(t), p(ẽ \ e(t)))),
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for each e ∈ E(t) and for each t ∈ T1.

Let us investigate the relationship between the concepts of Cournot-
Walras and Walras equilibrium. Here, we show, for the Cournot-Walras
equilibrium, a result similar to those obtained, in limit exchange economies,
by Codognato and Gabszewicz (1993) for the homogeneous oligopoly equi-
librium, and by Codognato and Ghosal (2000) for the Cournot-Nash equi-
librium. More precisely, we assume that T1 is nonempty and atomless.

The following proposition establishes that, in this framework, the set
of the Cournot-Walras equilibrium allocations coincides with the set of the
Walras equilibrium allocations.

Proposition 4. Under Assumptions 1′, 2′, 3, and 5, (i) if (ẽ, x̃) is a Cournot-
Walras equilibrium with respect to a price selection p(e), there is a price
vector p̃ such that (p̃, x̃) is a Walras equilibrium; (ii) if (p∗,x∗) is a Walras
equilibrium, there is a strategy selection e∗ such that (e∗,x∗) is a Cournot-
Walras equilibrium with respect to a price selection p(e).

Proof. (i) Let (ẽ, x̃) be a Cournot-Walras equilibrium with respect to the
price selection p(e). First, it is straightforward to show that, for each t ∈ T1,
p̃x̃(t) = p̃w(t), where p̃ = p(ẽ). Let us now show that, for each t ∈ T1,
Xp̃(t). Suppose that this is not the case for a trader τ ∈ T1. Then, by
Assumption 2′, there is a bundle x̄ ∈ {x ∈ Rl

+ : p̃x = p̃w(τ)} such that
uτ (x̄) > uτ (x̃(τ)). By Lemma 5 in Codognato and Ghosal (2000), there
exist λj ≥ 0, j = 1, . . . , l,

∑l
j=1 λ

j = 1, such that

x̄j = λj

∑l
i=1 p̃

iwi(τ)

p̃j
, j = 1, . . . , l.

Let ēij(τ) = wi(τ)λj , i, j = 1, . . . , l. Substituting in Equation (4) and taking
into account the fact that, by Equation (3), p(ẽ) = p(ẽ \ ē(t)) = p̃, it is easy
to verify that

x1j(τ, ẽ \ ē(τ), p(ẽ \ ē(τ)) = wj(τ)−
l∑

i=1

wj(τ)λi +
l∑

i=1

wi(τ)λj p̃
i

p̃j
= x̄j ,

j = 1, . . . , l. But then, we have

uτ (x
1(τ, ẽ \ ē(τ), p(ẽ \ ē(τ)))) = uτ (x̄) > uτ (x̃(τ)) = uτ (x

1(τ, ẽ(τ), p(ẽ))),

which contradicts the fact that the pair (ẽ, x̃) is a Cournot-Walras equi-
librium. (ii) Let (p∗,x∗) be a Walras equilibrium. First, notice that, by
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Assumption 2′, p∗ ∈ Rl
++ and p∗x∗(t) = p∗w(t), for each t ∈ T . But then,

by Lemma 5 in Codognato and Ghosal (2000), for each t ∈ T1, there exist
λ∗j(t) ≥ 0, j = 1, . . . , l,

∑l
j=1 λ

∗j(t) = 1, such that

x∗j(t) = λ∗j(t)
∑l

i=1 p
∗iwi(t)

p∗j
, j = 1, . . . , l.

Define now a function λ∗ : T1 → Rl
+ such that λ∗j(t) = λ∗j(t), j = 1, . . . , l,

for each t ∈ T1 and a function e∗ : T1 :→ Rl2
+ such that e∗ij(t) = wi(t)λ∗j(t),

i, j = 1, . . . , l, for each t ∈ T1. It is straightforward to show that the function
e∗ is integrable. Moreover, by using Equation (4), it is easy to verify that

x∗j(t) = wj(t)−
l∑

i=1

e∗ji(t) +
l∑

i=1

e∗ij(t)
p∗i

p∗j
,

j = 1, . . . , l, for each t ∈ T1. As x∗ is an allocation, it follows that

∫

T0

x∗j(t) dµ+

∫

T1

wj(t) dµ−
l∑

i=1

∫

T1

e∗ji(t) dµ+
l∑

i=1

∫

T1

e∗ij(t) dµ
p∗i

p∗j
=

∫
T wj(t) dµ,
j = 1, . . . , l. This, in turn, implies that

∫

T0

x∗j(t) dµ+
l∑

i=1

∫

T1

e∗ij(t) dµ
p∗i

p∗j
=

∫

T0

wj(t) dµ+
l∑

i=1

∫

T1

e∗ji(t) dµ,

j = 1, . . . , l. But then, by Assumption 5, there is a price selection p(e) such
that p∗ = p(e∗) and, consequently, x∗(t) = x0(t, p(e∗)), for each t ∈ T0, and
x∗(t) = x1(t, e∗(t), p(e∗)), for each t ∈ T1. It remains to show that no trader
t ∈ T1 has an advantageous deviation from e∗. Suppose, on the contrary,
that there exists a trader τ ∈ T1 and a strategy ē ∈ E(τ) such that

uτ (x
1(τ, e∗ \ ē(τ), p(e∗ \ ē(τ)))) > uτ (x

1(τ, e∗(τ), p(e∗))).

By Equation (3), we have p(e∗ \ ē(τ)) = p(e∗) = p∗. Moreover, it is easy to
show that p∗x1(τ, e∗\ ē(τ), p(e∗\ ē(τ)) = p∗w(τ). But then, the pair (p∗,x∗)
is not a Walras equilibrium, which generates a contradiction.

Proposition 4 has the following corollary assuring the existence of a
Cournot-Walras equilibrium in limit exchange economies.
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Corollary. Under Assumptions 1′, 2′, 3, and 5, a Cournot-Walras equilib-
rium exists.

Proof. From Aumann (1966), we know that, under Assumptions 1′, 2′, and
3, a Walras equilibrium exists. But then, by part (ii) of Proposition 4, this
implies that a Cournot-Walras equilibrium exists.

The question whether the equivalence between the concepts of Cournot-
Walras and Walras equilibrium still holds when the strategic traders are
represented as atoms was dealt with by Busetto et al. (2008). They an-
alyzed an exchange economy with two identical atoms facing an atomless
continuum of traders and gave an example showing that, in this economy,
there is a Cournot-Walras equilibrium allocation which is not Walrasian.
We repropose here their example, which we will refer to also in the next
section.

Example 2. Consider the following specification of an exchange economy
satisfying Assumptions 1′, 2′, 3, and 5, where l = 2, T1 = {2, 3}, T0 =
[0, 1], w(t) = (1, 0), ut(x) = lnx1 + lnx2, for each t ∈ T1, w(t) = (1, 0),
ut(x) = lnx1 + lnx2, for each t ∈ [0, 12 ], w(t) = (0, 1), ut(x) = lnx1 + lnx2,
for each t ∈ [12 , 1]. For this economy, there is a Cournot-Walras equilibrium
allocation which does not correspond to any Walras equilibrium.

Proof. The only symmetric Cournot-Walras equilibrium is the pair (ẽ, x̃),

where ẽ12(2) = ẽ12(3) =
1+

√
13

12 , x̃1(2) = x̃1(3) = 11+
√
13

12 , x̃2(2) = x̃2(3) =
1+

√
13

20+8
√
13
, x̃1(t) = 1

2 , x̃2(t) = 3
10+4

√
13
, for all t ∈ [0, 12 ], x̃1(t) = 5+2

√
13

6 ,

x̃2(t) = 1
2 , for each t ∈ [12 , 1]. On the other hand, the only Walras equilibrium

of the economy considered is the pair (x∗, p∗), where x∗1(2) = x∗1(3) = 1
2 ,

x∗2(2) = x∗2(3) = 1
10 , x

∗1(t) = 1
2 , x

∗2(t) = 1
10 , for each t ∈ [0, 12 ], x

∗1(t) = 5
2 ,

x∗2(t) = 1
2 , for each t ∈ [12 , 1], p

∗ = 1
5 .

Therefore, the counterintuitive result established by Shitovitz (1973)
with his Theorem B can be avoided also in the framework of Busetto et
al. (2008). In the next section, where we compare the different notions of
equilibrium introduced above, we will see how the problem of providing an
endogenous explanation of the strategic and competitive behavior within
the Cournot-Walras approach has been addressed by using the Cournot-
Nash equilibrium of the Shapley’s model.
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6 Homogeneous oligopoly, Cournot-Nash, and
Cournot-Walras equilibrium

In this section, we analyze, in a systematic way, the relationships among
the three concepts of equilibrium presented above. We first show that the
homogeneous oligopoly equilibrium concept proposed by Codognato and
Gabszewicz (1991) and the Cournot-Walras equilibrium concept introduced
by Busetto et al. (2008) differ. To this end, we provide the following example
showing that there is a Cournot-Walras equilibrium allocation which does
not correspond to any homogeneous oligopoly equilibrium.

Example 3. Consider the following specification of an exchange economy
satisfying Assumptions 1′, 2′, 3, and 5, where l = 3, T1 = {2, 3}, T0 =
[0, 1], w(t) = (1, 0, 0), ut(x) = 2x1 + lnx2 + lnx3, for each t ∈ T1, w(t) =
(1, 0, 0), ut(x) = lnx1 + lnx2 + lnx3, for each t ∈ [0, 12 ], w(t) = (0, 1, 1),
ut(x) = x1 + 1

2 lnx
2 + lnx3, for each t ∈ [12 , 1]. For this economy, there is

a Cournot-Walras equilibrium allocation which does not correspond to any
homogeneous oligopoly equilibrium.

Proof. There is a unique Cournot-Walras equilibrium represented by the

pair (ẽ, x̃), where ẽ12(2) = ẽ12(3) = 1+
√
241

48 , ẽ13(2) = ẽ13(3) = −1+
√
97

24 ,

x̃1(2) = x̃1(3) = 49−√
241−2

√
97

48 , x̃2(2) = x̃2(3) = 1+
√
241

44+4
√
241

, x̃3(2) = x̃3(3) =

−1+
√
97

28+4
√
97
, x̃1(t) = 1

3 , x̃
2(t) = 4

11+
√
241

, x̃3(t) = 2
7+

√
97
, for each t ∈ [0, 12 ],

x̃1(t) = 9+
√
97+

√
241

12 , x̃2(t) = 6
11+

√
241

, x̃3(t) = 6
7+

√
97
, for each t ∈ [12 , 1].

On the other hand, there is no interior symmetric homogeneous oligopoly
equilibrium for the economy considered.

Codognato (1995) compared the mixed version of the model in Codog-
nato and Gabszewicz (1991) with the mixed version of the Shapley’s model.
The point was the following: if the set of the equilibrium allocations of
the model of homogeneous oligopoly equilibrium - where strategic and com-
petitive behavior is assumed a priori - had coincided with the set of the
equilibrium allocations of the Shapley’s model - where strategic and com-
petitive behavior is generated endogenously - then the notion of homoge-
neous oligopoly equilibrium could have been re-interpreted as the outcome
of a game in which all agents behave strategically but those belonging to
the atomless sector turn out to act competitively whereas the atoms turn
out to have market power. Therefore, this equilibrium concept would have
been immune from the criticism by Okuno et al. (1980).
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Nonetheless, Codognato (1995) provided an example showing that the
set of the homogeneous oligopoly equilibrium allocations does not coin-
cide with the set of the Cournot-Nash equilibrium allocations. There were
two possible explanations of this result. The first is that the homogeneous
oligopoly equilibrium, like the other Cournot-Walras equilibrium concepts,
has an intrinsic two-stage nature, which cannot be reconciled with the one-
stage Cournot-Nash equilibrium of the Shapley’s model. The second is that,
in the model of Codognato and Gabszewicz (1991), the oligopolists have the
twofold behavior mentioned above - as they act à la Cournot in making their
supply decisions and à la Walras in exchanging commodities - whereas, in
the mixed version of the Shapley’s model, they always behave à la Cournot.

The relationship between the concepts of Cournot-Walras and Cournot-
Nash equilibrium was analyzed by Busetto et al. (2008). They noticed that
the allocation corresponding to a Cournot-Walras equilibrium in Example 2
also corresponds to a Cournot-Nash equilibrium as in Definition 4. Conse-
quently, the Cournot-Nash equilibrium can be viewed as a situation in which
all traders behave strategically but those belonging to the atomless sector
have a negligible influence on prices. In this paper, by means of Example
1 and Proposition 3, we have provided a more general proof of this fact.
Thus, the strategic behavior of the atomless sector can be interpreted as
competitive behavior.

On the other hand, at a Cournot-Walras equilibrium as in Definition
5, the atomless sector is supposed to behave competitively while the atoms
have strategic power. This led Busetto et al. (2008) to conjecture that the
set of the Cournot-Walras equilibrium allocations coincides with the set of
the Cournot-Nash equilibrium allocations. They showed that this is false by
means of the following example.

Example 4. Consider the following specification of an exchange economy
satisfying Assumptions 1′, 2′, 3, and 4, where l = 2, T1 = {2, 3}, T0 =
[0, 1], w(t) = (1, 0), ut(x) = lnx1 + lnx2, for each t ∈ T1, w(t) = (1, 0),
ut(x) = lnx1 + lnx2, for each t ∈ [0, 12 ], w(t) = (0, 1), ut(x) = x1 + lnx2,
for each t ∈ [12 , 1]. For this economy, there is a Cournot-Walras equilibrium
allocation which does not correspond to any Cournot-Nash equilibrium.

Proof. The only symmetric Cournot-Walras equilibrium of the economy

considered is the pair (ẽ, x̃), where ẽ12(2) = ẽ12(3) = −1+
√
37

12 , x̃1(2) =

x̃1(3) = 11−√
37

12 , x̃2(2) = x̃2(3) = −1+
√
37

14+4
√
37
, x̃1(t) = 1

2 , x̃2(t) = 3
7+2

√
37
,

for each t ∈ [0, 12 ], x̃1(t) = 1+2
√
37

6 , x̃2(t) = 6
7+2

√
37
, for each t ∈ [12 , 1].

17



On the other hand, the only symmetric Cournot-Nash equilibrium is the

strategy selection b̂12(2) = b̂12(3) =
1+

√
13

12 , b̂12(t) =
1
2 , for each t ∈ [0, 12 ],

b̂21(t) =
5+2

√
13

11+2
√
13

for each t ∈ [12 , 1], which generates the allocation x̂1(2) =

x̂1(3) = 11+
√
13

12 , x̂2(2) = x̂2(3) = 1+
√
13

22+4
√
13
, x̂1(t) = 1

2 , x̂
2(t) = 3

11+2
√
13
, for

each t ∈ [0, 12 ], x̂
1(t) = 5+2

√
13

6 , x̂2(t) = 6
11+2

√
13
, for each t ∈ [12 , 1], where

x̂(t) = x(t, b̂, p(b̂)), for each t ∈ T .

This confirms, in a more general framework, the nonequivalence result
obtained by Codognato (1995). In this regard, it is worth noticing that,
in both models compared in Example 4, large traders always behave à la
Cournot. Therefore, this example removes one of the possible explanations
of the nonequivalence proved by Codognato (1995), namely the twofold be-
havior of the oligopolists assumed in the model of homogeneous oligopoly
equilibrium. This suggested to Busetto et al. (2008) that the general cause
of the nonequivalence between the concepts of Cournot-Walras and Cournot-
Nash equilibrium had to be the two-stage implicit nature of the Cournot-
Walras equilibrium concept, which cannot be reconciled with the one-stage
Cournot-Nash equilibrium of the Shapley’s model. For this reason, they in-
troduced a reformulation of the Shapley’s model as a two-stage game, where
the atoms move in the first stage and the atomless sector moves in the second
stage, and showed that the set of the Cournot-Walras equilibrium allocations
coincides with a specific set of subgame perfect equilibrium allocations of
this two-stage game. Therefore, they provided a strategic foundation of the
Cournot-Walras approach in a two-stage setting.
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