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Abstract

We consider the problem of pricing step double barrier options with binomial lattice

methods. We introduce an algorithm that is robust and efficient, that treats the ’near

barrier’ problem for double barrier options and permits the valuation of step double barrier

options with American features.

Keywords : double barrier options, step double barrier options, American options, tree meth-
ods, binomial methods.

Introduction

Double Barrier options have become quite popular especially in the foreign exchange markets.
A double barrier option has a lower barrier and an upper barrier which control the option.
Once either of these barriers is breached, the status of the option is immediately determined:
either the option comes into existence if the barrier is of knock-and-in type, or ceases to exist
if the barrier is of knock-and-out type. Step double barrier options are more flexible contracts
that allow investors to set knock-and-out or knock-and-in levels they want. The feature of
these contracts is that the double barrier is not constant as in the standard case, but it evolves
as a step function of time. Guillame [11] presents closed-form formulae for different types of
two-step double barrier options in the Black-Scholes model, but no analytical expressions are
given for more general step barrier options. In the latter case the author proposes a conditional
Monte Carlo method scheme enhanced with control variate.

In this article we deal with numerical tree methods because they permit to easily treat
general multi-step double barrier options, including early exercise features.

The classical CRR approach may be problematic when applied to barrier options because
the convergence is very slow compared with the standard case. A possible solution widely
shared in literature is to feed the algorithm with the right value of the barrier. In fact the
convergence behaviour improves when the barrier lies exactly (or is very close) on a layer of the
tree nodes. Boyle-Lau [2] choose the number of time steps in order to minimize the distance
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between the barrier and a layer of nodes. Figlewky-Gao [6] introduce an Adaptive Mesh Model
that refine the tree mesh near the barrier. Ritchken [13] aligns a layer of nodes of the trinomial
tree with each barrier. Later Cheuck-Vorst [3] present a modification of the trinomial method
(based on a change of the geometry of the tree) which allows to set a layer of nodes exactly
on the barrier for every choice of the number of time steps. Gaudenzi-Lepellere [9] introduce
suitable interpolations of binomial values and Gaudenzi-Zanette [12] construct a tree where all
the mesh points are generated by the barrier itself. However, all the previous methods are not
able to price efficiently double barrier options.

In order to deal with double barrier options Dai-Lyuu [5] introduce the bino-trinomial tree
that is constructed so that both barriers exactly hit two lines of the tree nodes. Numerical
results show that this method is not able to treat the ’near barrier’ problem, occuring when
the initial asset price is very close to one of the barriers.
In order to overcome this problem we introduce a method that generates the binomial tree
points using the Dai-Lyuu [5] binomial mesh but forgets the trinomial part using just simple
interpolations. Moreover, the extension of this method to multi-step double barrier options
(including American features) is straightforward and it allows to obtain accurate estimates of
the prices in a very short time.

The paper is organized as follows. In Section 1 we present the model and the bino-trinomial
tree method for continuous double barrier options and in Section 2 we describe the new proposed
lattice algorithm for double barrier options. In Section 3 we provide the extension of this method
to step double barrier options. Finally, in Section 4, we compare the results obtained with our
algorithm with Dai-Lyuu bino-trinomial tree (double barrier options), Guillaume closed-form
formulae (two step double barrier options) and Monte Carlo method (multi-step double barrir
options).

1 The model and the bino-trinomial method

In this paper, we consider a market model where the evolution of a risky asset is governed by
the Black-Scholes stochastic differential equation

dSt

St

= rdt+ σdBt, S0 = s0, (1)

where (Bt)0≤t≤T is a standard Brownian motion under the risk neutral measure Q. The non-
negative constant r is the force of interest rate and σ is the volatility of the risky asset.

LetM be the number of steps of the binomial tree and ∆τ = T
M

the corresponding time-step.
The standard discrete binomial process is given by

S(i+1)∆τ = Si∆τYi+1, 0 ≤ i ≤M − 1,

where the random variables Y1, . . . , YM are independent and identically distributed with values
in {d, u}. Let us denote by q = P(YM = u). The Cox-Ross-Rubinstein tree corresponds to the

choice u = 1
d
= eσ

√
∆τ and

q =
er∆τ − e−σ

√
∆τ

eσ
√
∆τ − e−σ

√
∆τ
.
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Now, let us consider a continuous double barrier option with barrier levels L (lower barrier)
and H (higher barrier). In order to treat the double barrier options pricing problem Dai-Lyuu
[5] introduce the following bino-trinomial method. After a logarithmic change of the barriers
l = log( L

s0
) and h = log(H

s0
) they first construct in the log-space a binomial CRR random walk

with space step σ
√
∆T , where the new time step ∆T is defined as follows.

Considering the CRR choice of time step ∆τ = T
M
, the new time step is defined such that

∆T =
(h− l

2kσ

)2

where k = ⌈ h−l

2σ
√
∆τ

⌉. By this way, the layers coincide with down barrier L and up barrier H and

the new number of steps is M ′ = ⌊ T
∆T

⌋. Now, it is possible to build a binomial structure of M ′

time steps with binomial coefficient u = 1
d
= eσ

√
∆T and probability q = er∆T−e−σ

√

∆T

eσ
√

∆T−e−σ
√

∆T
.

The remaining amount of time to make the whole tree span T years, that we denote with ∆T ′,
is defined as

∆T ′ = T −
(⌊

T

∆T

⌋

−1

)

∆T

and corresponds to the length of the first time step of the bino-trinomial tree. Finally, Dai-Lyuu
construct a 1-step trinomial tree, using a moment matching procedure, starting from s0 and
reaching three nodes of the previous binomial CRR tree at time ∆T ′. The merge of the binomial
tree of M ′ steps and the 1-step trinomial tree provide all the mesh structure. The pricing of
European or American continuous double barrier options can be done by backward dynamic
programming procedure using this bino-trinomial mesh structure. The numerical results in
section 4 will show that this binomial-trinomial structure is not able to treat the ’near barrier’
problem. In order to overcome this, we introduce a simpler binomial structure called ”the
binomial lattice” approach.

2 The binomial lattice approach for double Barrier op-

tions

In the following, we will use the same binomial parameters ∆T , u, d and q of Dai-Lyuu [5],
computed as described in the previous section. Moreover, we consider a new number of time
steps N :=M ′ + 2 in order to perform a suitable interpolation in time.

First of all, we construct a binomial mesh structure where all the binomial nodes are gen-
erated by the barriers. Therefore we build a tree which nodes at maturity are indeed all of
type

Lu2j , j = 0, ..., k,

so that Lu2k = H (where, as in the previous section, k = ⌈ h−l

2σ
√

T

M

⌉ ).

We now proceed to the description of the pricing algorithm in the case of double barrier
options knock-and-out. The underlying asset at a generic node (i, j), ∀ i = 0, ..., N , is

Si,j =

{

Lu2j , j = 0, ..., k if N − i is even

Lu2j+1, j = 0, ..., k − 1 if N − i is odd
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We shall denote by vi(Si,j) the option price at time i depending on the underlying Si,j .
The option prices at maturity are

vN(SN,0) = vN(SN,k) = 0 and vN(SN,j) = ψ(SN,j), ∀j = 1..., k − 1,

where ψ(x) is the payoff function. For call options ψ(x) = max{x−K, 0}, while for put options
ψ(x) = max{K − x, 0}, where K is the strike price.

At time step i = N − 1, ..., 0 it is possible to compute the option price using

vi(Si,j) = e−r∆T [qvi+1(Si+1,j+1) + (1− q)vi+1(Si+1,j)], j = 0, ...k − 1, if N − i is odd,

vi(Si,j) = e−r∆T [qvi+1(Si+1,j) + (1− q)vi+1(Si+1,j−1)], j = 1, ...k − 1, if N − i is even.

The values at the barriers vi(L), vi(H), are set equal to 0 at every step i with N − i even, in
order to take in account the ”out” feature of the barrier option.

At time steps i = 0 and i = 2 we choose four nodes (two less and two greater than s0). In
order to have a precise price of the double barrier option with respect to the initial value s0
we interpolate (by a Lagrange 4 points interpolation) these four points points at the value s0
obtaining two ”precise” prices at the two different times T − (N−2)∆T (corresponding at time
step i = 2) and T −N∆T (corresponding at time step i = 0). A linear interpolation at time 0
of these prices will provide the estimation of the option price at time 0 and initial underlying
asset s0.

We remark that when there are no nodes either between s0 and L or between s0 and H, we
modify the choice of the interpolation points under and over s0, taking into account only the
three points which are the closest to the barrier. This approach permits us to treat easily and
efficiently the ’near-barrier’ problem.

In the American case the procedure is similar with suitable differences for the prices values
on the barriers. In particular we set vi(L) = ψ(L) and vi(H) = ψ(H) for each time step
i = N, ..., 0 with N − i even (see Remark 5.1 in [9]). In the backward procedure, as usual, we
need to compare the early exercise with the continuation value at each node of the tree.

The procedure previously described provides an efficient evaluation of double barrier options
both in European and American case. We will show this in the last section, concerning the
numerical results, where our method will be compared with the bino-trinomial algorithm.

3 The binomial lattice approach for step double Barrier

options

In this sction we apply the previous technique for pricing step double barrier options. Let
us introduce the regular step double barrier options as explained in Guillaume [11]. Let
{t0, t1, ..., tn−1, tn} be a partition of the option lifetime [0, T ] with 0 = t0 < t1 < ... < tn = T .
A standard n-step double barrier option is an option in which the barriers are constant in ev-
ery interval [ti, ti+1], i = 0, ..., n − 1. Hence, at each interval [ti, ti+1] is associated a constant
double barrier with down barrier Li and up barrier Hi. A standard n-step double knock-out
option with payoff function ψ, has this payoff at maturity provided that the underlying asset
price stayed in (Li, Hi) in every interval [ti, ti+1], otherwise it expires worthless or provides a
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contractual rebate. It is possible to include in the step double barrier options the possibility to
remove the knock-out barrier provision (partial-time step double barrier options). For exam-
ple an early ending n-step double knock-out option with maturity tn has the same payoff of a
standard call or put on the condition that the underlying asset price stayed in (Li, Hi) in every
interval [ti, ti+1], i = 0, .., n − 2 (hence there are no ”out” condition on the last time interval).
A windows n-step double knock-out option has the same payoff of a standard call or put on con-
dition that the underlying asset price stayed in (Li, Hi) in every interval [ti, ti+1], i = 1, .., n− 2
(hence there are no ”out” condition on the first and last time interval).

A partial-time step double barrier option will always be more valuable that the correspond-
ing standard step double barrier option. Moreover, it is possible to take into account knock-in
features in all these contracts. In the European case the knock-in options prices are obtained by
taking the difference between the prices of the corresponding vanilla option and the knock-out
option.

We can apply the binomial lattice approach to treat standard and partial-time step double
barrier options in a straightforward way. Let us consider for example a two-step double knock-
out option. We globally takeM times steps and we considerM1 = ⌊ t1−t0

T
⌋ time steps in the first

interval [t0, t1] and M2 = M −M1 time steps in the second interval [t1, t2]. We first consider
the time period [t1, t2] and we apply the double barrier procedure used in the previous section.
So we compute the binomial parameters N2 =M ′

2+2, ∆T2, u2, d2, q2, k2 in order to hit exactly
the barriers L2 and H2. This leads to a new binomial mesh {S2

i,j} defined ∀ i = 0, ..., N2 as
follows

S2
i,j =

{

L2u
2j
2 , j = 0, ..., k2 if N2 − i is even

L2u
2j+1
2 , j = 0, ..., k2 − 1 if N2 − i is odd

We can then proceed using the backward procedure for i = N2, ..., 0 as described in the previous
section. With the linear interpolation in time at t1 we can obtain at every node S2

0,j the
corresponding option price v20(S

2
0,j).

Now we proceed in the same way in time interval [t0, t1]. We compute the new binomial
parameters N1, ∆T1, u1, d1, q1, k1 in order to hit exactly the barriers L1 and H1. This leads to
a new binomial mesh structure {S1

i,j}. In order to obtain the option prices on the new nodes
with underlying S1

N1,j
, j = 0, ..., k1, we interpolate at every S1

N1,j
, j = 0, ..., k1 by a Lagrange

interpolation using 4 suitable points in the set {(S2
0,j , v

2
0(S

2
0,j))}, with j = 0, ..., k2 if N2 is even

and with j = 0, ..., k2−1 if N2 is odd. In order to perform such interpolation we set v20(S
2
0,j) = 0,

for j such that S2
0,j ≤ L2 or S

2
0,j ≥ H2. Moreover, the values v1N1

(S1
N1,j

) will be set equal to zero
if either S1

N1,j
≤ L2 or S1

N1,j
≥ H2.

Finally, we proceed backward for i = N1, ..., 0 and we compute the price at s0 by a Lagrange
interpolation in space and a linear interpolation in time as described before.

In the early ending two-step double knock-out option we just need to add the treatment of
the period [t2, t3] where there are no ”out” conditions. We start by considering the number of
time stepsM3 and the corresponding ∆τ3. Then we compute k3 and ∆T3 in order to hit exactly

the barriers L2, H2, i.e. k3 = ⌈ h2−l2
2σ

√
∆τ3

⌉ and ∆T3 =
(

h2−l2
2k3σ

)2

. The parameters M ′
3, N3, u3, d3, q3

are computed as usual. Now, starting from the nodes evaluated at time t2 we can consider
a tree structure {S3

i,j} in the time interval [t2, t3] of N3 time steps. At maturity t3 we obtain
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the underlying assets SN3,j = L2u
j
3, j = −N3, ..., 2k3 +N3. Then we apply the backward CRR

binomial procedure starting with the maturity condition at time t3. The prices at the nodes
SN2,j = L2u

j
2, j = 0, ..., k2 at time t2 are obtained with the interpolation in time and space.

Now the procedure is the same as in the standard two-step double barrier options.

The treatment of the windows two-steps double knock-out options is similar. In the n-step
double barrier options case we just apply the procedure for two-step double barrier options
recursively.

4 Numerical results

We provide some numerical comparisons of the algorithms presented in the previous sections
in the case of double barrier options, two step double barrier options and multi-step double
barrier options.

All the computations presented in the tables have been performed in double precision on a
PC with a processor Intel Core i5 at 1.7 Ghz.

4.1 Double Barrier Options

In order to test the efficiency of the binomial lattice (BL) approach we will consider the numer-
ical experiments proposed in Day-Lyuu [5]. The volatility is σ = 0.25, the interest rate r = 0.1,
the current stock price is s0 = 95, the maturity 1 year and the strike price is K = 100. We
consider two cases. In the first case L = 90 and H = 140. In the second case we consider a
case of ’near-barrier’: L = 94.9. We use as benchmark value the closed formula provided by
Kunitomo Ikeda [8]. The results are given in Table 1.

L=90 H=140 L=94.9 H=140
M DL BL KI DL BL KI
100 1.423589 1.425053 0.274716 0.006089
200 1.440976 1.441415 0.227618 0.025050
400 1.449705 1.450196 1.458435 0.109875 0.021563 0.253056
800 1.453358 1.453460 0.128411 0.025215
1600 1.456403 1.456354 0.062742 0.024799
3200 1.457183 1.457182 0.053451 0.025114

Table 1: Double barrier options prices.

4.2 Two Step Double Barrier Options

Here we will consider the numerical experiments proposed in Guillame [11]. In the European
case we use as benchmark value the closed formula provided in [11]. No benchmark is available
in the American case. The volatility is σ = 0.3, the interest rate r = 0.03, the current stock
price is s0 = 100 and the strike price varies: K = 90, 100, 110.

In Table 2 we report two-step double knock-out put values with double barrier parameters
t1 = 0.25, t2 = T = 0.5, L1 = 70, H1 = 130, L2 = 75, H2 = 125.
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K = 90
M BL-EU GUI BL-AM
100 0.806457 3.549508
200 0.819128 3.541653
400 0.815156 0.821806 3.545095
800 0.820657 3.555169
1600 0.821165 3.555965
3200 0.821348 3.556271

K = 100
BL-EU GUI BL-AM
3.152257 7.694393
3.186487 7.694650
3.187184 3.194080 7.703400
3.191445 7.712047
3.192845 7.713536
3.192542 7.713324

K = 110
BL-EU GUI BL-AM
7.089792 13.516271
7.196594 13.574689
7.186754 7.186905 13.576866
7.182939 13.580487
7.184522 13.581967
7.184678 13.582068

Table 2: Two-step double knock-out put values.

In Table 3 we consider an early-ending two step double knock-out call with K = 120 and
the double barrier parameters t1 = 0.125, t2 = 0.25, t3 = T = 0.5, L1 = 75, H1 = 125, L2 = 70,
H2 = 130. The volatility is varying σ = 0.15, 0.3.

σ = 0.15
M BL-EU GUI BL-AM
100 0.263380 9.962265
200 0.265933 9.962439
400 0.271830 0.2755 9.962422
800 0.273739 9.962533
1600 0.275081 9.962435
3200 0.275201 9.962400

σ = 0.3
BL-EU GUI BL-AM
1.575926 9.728607
1.613757 9.741826
1.605417 1.6165 9.745550
1.608395 9.750609
1.612841 9.755035
1.615489 9.758268

Table 3: Early-ending two step double knock-out call values.

4.3 Multi Step Double Barrier Options

Finally we propose a 16-steps knock out double barrier option. In Table 4 we report 16-steps
double knock-out put values with barrier parameters ti = 0.125 · i, tn = T = 2, Li = 70 − i,
Hi = 130 + i, i = 1, ..., 16. The volatility is σ = 0.3, the interest rate r = 0.03, the current
stock price is s0 = 100 and the strike price is K = 110. In the European case we use as
benchmark value the Monte Carlo method provided in Baldi-Caramellino-Iovino [1] with 10
millions simulations and 1000 Euler time discretization steps (with the confidence interval in
parenthesis).

M BL-EU MC BL-AM
100 6.585345 17.570376
200 6.399257 17.598079
400 6.288664 6.197331 17.623151
800 6.243341 [6.187387-6.207276] 17.627720
1600 6.233008 17.629993
3200 6.208183 17.633762
6400 6.203391 17.634432
12800 6.194374 17.635186
25600 6.191878 17.635486

Table 4: 16-step double knock-out put values.

The computation times are very fast. For example, for M = 12800 and M = 25600 the
computation times are 0.028221 and 0.072933 seconds, respectively.
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