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Xiao Wei †, Marcellino Gaudenzi‡, Antonino Zanette§

Abstract

In connection with a problem posed by Kijima and Wong [11], we propose a lattice algorithm
for pricing simple Ratchet equity-indexed annuities (EIAs) with early surrender risk and global
minimum contract value when the asset value depends on the CIR++ stochastic interest rates. In
addition we present an asymptotic expansion technique which permits to obtain a first order ap-
proximation formula for the price of simple Ratchet EIAs without early surrender risk and without
global minimum contract value. Numerical comparisons show the reliability of the proposed methods.

Keywords: Ratchet Equity-indexed annuities; stochastic interest rates; early surrender risk; lattice
methods; asymptotic expansions.

1 Introduction

Equity Indexed Annuities (EIAs) are important contracts in the insurance market. Ratchet EIAs
allow the policyholder to participate in the potential appreciation of the stock market. Moreover,
in order to eliminate the downside risk, the insurance companies typically guarantee a minimum
return. EIAs were introduced in 1995 by Keyport Life Insurance Co., and now appeal more and
more investors. In the early beginning, EIAs were priced in the framework of the standard Black-
Scholes model, that is, the equity index follows a geometric Brownian motion process with a constant
interest rate (see Gerber and Shiu [8], Hardy [9]). But EIAs usually have a long maturity, hence it’s
more preferable to price EIAs under a stochastic interest rates model rather than under a constant
one. Up to now, Vasicek model is the only stochastic interest rates model used in EIAs pricing as
we know. Lin and Tan ([15]) obtained prices for various types of EIAs, in the Vasicek model, by
using Monte Carlo simulations. Kijima and Wong ([11]) derived a closed formula, in the extended
Vasicek interest rates model, for pricing simple Ratchet EIAs with geometric index averaging. They
also propose an efficient Monte Carlo simulation algorithm for pricing Ratchet EIAs with arithmetic
index averaging. As well known, the main problem of the extended Vasicek model is that it permits
negative interest rates. Moreover, as noted by Kijima and Wong, Ratchet EIAs pricing literature
has largely ignored early surrender risk, so that they propose this question as a challenging problem.

In this paper we consider a joint evolution for the equity value with the CIR++ stochastic
interest rates model (see Brigo and Mercurio [3]) which is consistent with the term structure of the
interest rates and it could overcome the problem of negative interest rates of the extended Vasicek
model (see The Positivity of Rates and Fitting Quality section 3.9.3 of Brigo and Mercurio [3]). The
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purpose is two-fold: to obtain analytical approximations and to provide lattice techniques in order
to treat early surrender risk.

We propose an asymptotic expansion formula, based on the approaches of Kim and Kunitomo
[12], Kunitomo and Takahashi [13], for pricing simple Ratchet EIAs without minimum contract value
and without early surrender risk.

Furthermore we introduce a second technique, a tree method which allows to price simple Ratchet
EIAs with early surrender risk and with minimum contract value. In this case, the pricing problem
leads to a non-recombining tree. In order to treat the problem we use the framework of singular
points techniques introduced in Gaudenzi, Lepellere and Zanette [7] (see also Costabile, Gaudenzi,
Massabò and Zanette [4]). The proposed algorithm is based on appropriate jump conditions at
each node corresponding to each reset date. We obtain a procedure which allows to get the price
in a reasonable time and to obtain easily the convergence of the discrete approximations to the
continuous value.

The paper is organized as follows. In Section 2 we describe the financial model for the joint
evolution of the equity and of the spot interest rate processes in a continuous setting. In Section 3
we describe the insurance contracts. In Section 4 the approximation of the price of simple Ratchet
EIAs without early surrender risk and minimum contract value is obtained. In Section 5 we propose
our tree algorithm for evaluating the price of the simple Ratchet EIAs with early surrender risk.
Numerical results are proposed in Section 6.

2 The financial model

We shall be concerned with a geometric Brownian motion describing the evolution of the equity
value with stochastic interest rates. We consider, under the risk-neutral probability measure Q, the
following dynamics for the equity value

dS(t)

S(t)
= r(t)dt + σSdB1(t), S(0) = S0 > 0, (1)

where r(t) is the short interest rate, σS is the constant stock price volatility and B1(t) is a standard
Brownian motion.

The risk-neutralized process for the short rate r(t) is described, as in the extended Cox- Ingersoll-
Ross model (CIR++) (see [5] and [3]) by the following dynamics:

{

dx(t) = k(θ − x(t)) dt + σ
√

x(t) dB2(t), x(0) = x0

r(t) = x(t) + ϕ(t)
(2)

where k is a constant representing the reversion speed, θ is the long term reversion target, σ is a
constant and B2(t) is a standard Brownian motion whose correlation with B1(t) is ρ. The Novikov
condition

2kθ > σ2

ensures that the origin is inaccessible to the process x, so that it remains positive. The function ϕ is
a deterministic function completely determined by the market values of the zero-coupon bonds (see
[3]).

3 The simple Ratchet EIAs with minimum contract value

and early surrender risk

We consider a simple Ratchet EAIs contract with annual reset dates and maturity N years, whose
payoff depends on the returns of the underlying asset at given reset times 1, ..., N .
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Let us denote by

Ri =
S(i)

S(i− 1)
, i = 1, ..., N,

the return during the annual period [i − 1, i] of the underlying asset S(i), i = 0, 1, ..., N , at the
annual observation times.

During every period, a local cap and floor of the individual returns, denoted by C and F respec-
tively, will be taken into account.

The sum Zi defined by

Zi = 1 +

i
∑

j=1

max (F,min (C,α [Rj − 1])) , (3)

will be called the running sum at time i (Z0 = 1). Here α > 0 is the participation rate. We name
max (F,min (C,α [Rj − 1])) the Ratchet interest rate in the time period [j − 1, j].
Moreover a minimum contract value (MCV)

GN = β(1 + g)N

is considered. Here g ≥ 0 is the minimum guaranteed annual interest rate and β is a certain
percentage of the initial premium. This value can be considered as a global floor of the simple
Ratchet contract. Hence ZN cannot be smaller than the global floor GN .

The payoff φ of the simple Ratchet EIAs with MCV is given by

φ(GN , ZN) = max(GN , ZN ). (4)

For the simple Ratchet EIAs without MCV, the payoff function reduces to ZN .
A surrender early risk can be embedded into the policy and it allows the policyholder to escape

out of the contract at the beginning of each year. We consider the decision to surrender the policy
as endogenous to the evaluation model, i.e., the policyholder decides to abandon the contract if this
is financially convenient. This allows to treat the surrender case as a Bermudan option embedded
into the simple Ratchet contract.

Let
Gi = β(1 + g)i, i = 1, .., N

the minimum contact value at annual time i. At every reset date i > 0, i = 1, ..., N − 1, the
policyholder has two alternatives: to continue the simple Ratchet contract or to surrender it receiving
the maximum between the running sum Zi and minimum contract value at time i

φ(Zi, Gi) = max(Zi, Gi). (5)

In the insurance practice cancellation of a contract in the early years may result in surrender
charges. According to 2009 Annuity Fact Book ([20]), these charges generally consist in a given
percentage of the annuity value and usually decline to zero over a period of time. The number of
years for which the cancellation fee is applied will be denoted by Nc (Nc < N). We shall denote
by ξ(i, Nc) the multiplicative factor needed in order to consider the cancellation charge. Hence
surrendering the simple Ratchet contract the policyholder receives the amount (see [17]):

φ(Zi, Gi) = max(ξ(i, Nc)Zi, Gi). (6)

In the numerical examples we will choose the function ξ according to 2009 Annuity Fact Book.

The evaluation of the previous contract requires the pricing of a Bermudan path-dependent
contingent claim in the continuous bivariate model with the interest rate that follows the CIR++
model.
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4 Asymptotic expansion method for EIAs without early sur-

render risk and without MCV

In this section, we propose an expansion method for pricing simple Ratchet EIAs without early
surrender risk and without MCV. This expansion, called small disturbance asymptotics, was already
applied to price plain vanilla European options under a CIR stochastic interest rates model (see
[13]). This approach permits to evaluate plain vanilla European financial contingent claims when the
underlying asset prices follow a general class of continuous Itô processes. The rigorous mathematical
validity of this expansion method was discussed in [13]. We propose here an expansion method for
the simple Ratchet EIAs without MCV. In fact, the presence of the MCV causes difficulties in order
to obtain an expansion because of the additional maximum operator in the payoff function (4).

In order to price EIAs without MCV in the extended CIR++ model we consider first the asymp-
totic expansion of CIR++ stochastic interest rate r(t) around the interest rate volatility σ = 0
using the Watanabe-Yoshida theory based on Malliavin Calculus (see [13]). Then we substitute the
asymptotic expansion of the interest rate term in the expression of the return of the equity index.
We finally derive a first order asymptotic expansion for the price of simple Ratchet EIAs from the
previous computations.

The price V0 at time 0 of an N -year simple Ratchet EIAs without early surrender risk and
without MCV is given by

V0 = EQ



e−
∫

N

0
r(s)ds



1 +

N
∑

j=1

max (F,min (C,α [Rj − 1]))







 (7)

= EQ



e−
∫

N

0
r(s)ds



1 +NF +

N
∑

j=1

(α(Rj − 1)− F )
+ −

N
∑

j=1

(α(Rj − 1)− C)
+









= EQ
[

e−
∫

N

0
r(s)ds (1 +NF )

]

+

N
∑

j=1

{

EQ
[

e−
∫

N

0
r(s)ds (α(Rj − 1)− F )

+
]

−EQ
[

e−
∫

N

0
r(s)ds (α(Rj − 1)− C)

+
]}

where x+ = max(0, x). The following theorem provides the asymptotic expansion formula for the
price of simple Ratchet EIAs without early surrender and without MCV.

Theorem 1 The first order approximation of the price of N -year simple Ratchet EIAs without MCV
under the models (1) and (2) is given by

V0 = L0 + σL1 + o(σ), (8)

where

L0 = Y0 +

N
∑

j=1

{

αCje
Σ
(j)
00
2

[

Φ
(

G
(j)
0 (C)

)

− Φ
(

G
(j)
0 (F )

)]

+Y0(α+ F )Φ
(

H
(j)
0 (F )

)

− Y0(α+ C)Φ
(

H
(j)
0 (C)

)

+ CY0

}

,
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L1 =

N
∑

j=0

α

{

Cje
Σ
(j)
00
2

[

D1Φ
(

G
(j)
0 (C)

)(

H
(j)
0 (C)

)

−D1Φ
(

G
(j)
0 (F )

)(

H
(j)
0 (F )

)]

+Cj

(

a
(j)
3 + a

(j)
4

)

e
Σ
(j)
00
2





√

Σ
(j)
00

2π

(

e−
(G(j)

0
(C))

2

2 − e−
(G(j)

0
(F ))

2

2

)

+Σ
(j)
00

[

Φ
(

G
(j)
0 (F )

)

− Φ
(

G
(j)
0 (C)

)]]}

+
N
∑

j=0

(F + α)Y0



D1Φ
(

H
(j)
0 (F )

)(

H
(j)
12 (F )

)

+ a
(j)
5

√

Σ
(j)
00

2π
e−

(H(j)
0

(F ))
2

2





−
N
∑

j=0

(C + α)Y0



D1Φ
(

H
(j)
0 (C)

)(

H
(j)
12 (C)

)

+ a
(j)
5

√

Σ
(j)
00

2π
e−

(H(j)
0 (C))

2

2



 ,

with

Y0 = exp

(

−
∫ N

0

r(0)(t)dt

)

, r(0)(t) = e−kt[r(0)− θ − ϕ(0)] + θ + ϕ(t),

Cj = exp

[

−
∫ j−1

0

r(0)(s)ds−
∫ N

j

r(0)(s)ds− 1

2
σ2
S

]

,

Θ
(j)
0 (x) = log

(

x+ α

α

)

−
∫ j

j−1

[

r(0)(s)− σ2
S

2

]

ds, Θ
(j)
12 (x) = −

[

Σ
(j)
01

Σ
(j)
00

]

Θ
(j)
0 (x),

G
(j)
0 (x) =

Θ
(j)
0 (x)− Σ

(j)
00

√

Σ
(j)
00

, H
(j)
0 (x) =

Θ
(j)
0 (x)
√

Σ
(j)
00

, H
(j)
12 (x) =

Θ
(j)
12 (x)
√

Σ
(j)
00

, a
(j)
i =

Σ
(j)
0i

Σ
(j)
00

,

and DnΦ(x) is the nth derivative of the standard Normal distribution function, Σ
(j)
nm, n,m = 0, · · · , 5

is the covariance of Njn and Njm, and

Nj0 =

∫ j

j−1

σSdB1(s) = σS [B1(j)−B1(j − 1)],

Nj1 =

∫ j

j−1

A1(s)ds, Nj3 =

∫ j−1

0

∫ j−1

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dtdB2(s),

Nj4 =

∫ N

j

A1(s)ds =

∫ j

0

∫ N

j

e−k(t−s)
√

r(0)(s)− ϕ(s)dtdB2(s)

+

∫ N

j

∫ N

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dtdB2(s),

Nj5 =

∫ N

0

A1(s)ds =

∫ N

0

∫ N

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dtdB2(s).

The proof of this theorem will be given in the Appendix.
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5 A lattice method for early surrender risk and MCV

5.1 The binomial tree for S and r

This section is devoted to describe the construction of a bivariate lattice structure proposed by
Wei [18] following the Nelson and Ramaswamy [16] technique. This procedure allows us to build a
binomial computational simple tree that approximates the evolution of the processes S and r in the
geometric Brownian motion with CIR++ stochastic interest rates model described by equations (1),
(2). We use for the interest rate r the two-steps procedure introduced in [10].

The first step consists in the construction of a binomial tree for the process x. Following [16] we
consider the transformation of x: X = 2

√
x/σ, in order to introduce a diffusion with unit variance.

By Ito’s Lemma
dX(t) = µXdt+ dB2(t), X(0) = 2

√
x0/σ, (9)

where µX = k(4θ−X2(t)σ2)−σ2

2X(t)σ2 .

To construct the discrete approximations of the processes X we divide the time to maturity N
into n intervals of length ∆t = N/n. Since X is a process with unit variance we use a random walk
approximation of the standard Brownian motion. As usual, a binomial tree may be considered to
describe the evolution of the discrete approximating processes. We label (0, 0) the starting node
where the X-process has value X(0). After i time steps (0 ≤ i ≤ n) X may be located at one of the
nodes (i, k) (k = 0, . . . , i) corresponding to the values

Xi,k = X0 + (2k − i)
√
∆t. (10)

Transition probabilities have to be specified to assure the matching of the local drift and of the
local variance between the discrete and the continuous model of X . This will guarantee that the
discretized process converges in distribution to the corresponding diffusion. To do this we have to
take into account that in some regions of the tree it may happen that multiple jumps are needed to
satisfy properly the matching conditions. According to [16], we define kd as the largest integer k∗

such that Xi,k + µX∆t ≥ Xi+1,k∗ and ku := kd + 1. The transition probabilities are then given by

pi,k =
µX∆t+Xi,k −Xi+1,kd

Xi+1,ku
−Xi+1,kd

.

Remark 1 In order to avoid possible exits from the lattice structure we need also the following
additional changes: when kd < 0 we set kd = 0 and pi,k = 0, when kd > i we set kd = i and pi,k = 1.

The second step consists in a shift of the tree which allows to perfectly reproduce the market
zero-coupon bonds structure. We compute r(t) using the shift ϕ(i∆t) to get ri,k = xi,k +ϕ(i∆t) for
all the nodes of the tree. The displacement ϕ is computed in order to be coherent with the market
zero-coupon curve at time 0 (see [10] and [3]).

In a similar way, we consider the following transformation Y (t) of S(t)

Y (t) =

logS(t)
σS

− ρX(t)
√

1− ρ2
.

Standard calculations show that the process Y (t) has unit variance. Furthermore Y (t) and X(t)
have null covariance. We can construct a recombining tree Yi,j for Y in the same way as in the case
of the process X .

Finally, we consider a bivariate tree obtained by merging the two univariate binomial tree for
the state variables X and Y . At each time step i we consider (i + 1)2 nodes that we label (i, j, k)
corresponding to the values Xi,k and Yi,j (k, j = 0, . . . , i). Starting from the node (i, j, k), in
consideration of possible multiple jumps and taking into account the tree structure, the process may
reach one of the four nodes:

(i+ 1, ju, ku), (i+ 1, ju, kd), (i+ 1, jd, ku), (i+ 1, jd, kd), (11)
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with probabilities
puu, pud, pdu, pdd, (12)

respectively. Here ju, jd, ku, kd are the indexes related to the number of multiple jumps on the tree
in the Y and X directions, and puu, pud, pdu, pdd are the transition probabilities computed using the
orthogonality of the two processes.

The tree for the joint evolution of the processes r and S is derived simply by applying a suitable
transformation to the discrete scheme just defined. Indeed, to each node of the tree (i, j, k) it
corresponds the value

ri,k =

{

X2
i,kσ

2
r

4 + ϕ(i∆t) if Xi,k > 0
ϕ(i∆t) otherwise

and the value
Si,j,k = exp[σS(

√

1− ρ2Yi,j + ρXi,k)].

We refer to [18] and [4] for a more detailed description of this lattice structure.
Based on the results of [2], [6], [14], [16] it follows that the approximating bivariate model defined

above converges weakly to the corresponding bivariate continuous diffusion.

5.2 The lattice algorithm

The use of a tree allows an easy treatment of the early surrender risk. In fact, with this lattice
procedure we can evaluate, at each reset date, the continuation value, i.e. the expected value of the
discounted cash flow obtained not surrendering the contract, and then we can compare it with the
payoff of the early surrender case. We solve the problem of pricing simple Ratchet EIAs with early
surrender risk using the bivariate tree introduced in the previous section and the framework of the
singular points introduced in [7].

For our purpose we need to evaluate, at every node of the tree, the price function v that provides,
for all possible admissible value of the running sum Z, the price of the contract. Since v will depends
on the nodes of the tree we use the notation vi,j,k(Z), where i is the time index, j, k are the indexes
related to the underlying asset and the interest rate. Using a backward procedure the price function
v can be easily computed at maturity, in fact if Z is the running sum vn,j,k(Z) is equal to φ(Z,GN ).

From the knowing of v at maturity we have to construct backward all the values of v along the
tree. During the backward procedure, at each reset date we need to compare the expected value
of the discounted cash flow obtained not surrendering the contract with the payoff of the early
surrender case. Moreover we need to consider the condition related to the jump of the running sum
at each reset date. Finally v0,0,0(1) will provide the price of the contract in the discrete setting.

In order to construct a feasible backward procedure, we use the singular points technique that is
based on the remark that vi,j,k(Z) can be treated as piecewise linear continuous function at every
nodes of the tree. Such piecewise linear function represents the linear extension of the discrete
values achieved by vi,j,k(Z). A piecewise linear continuous function f(x) (x ∈ IR) is completely
characterized by the coordinates of the points (xi, f(xi)) where it changes the slope of the function,
such points are called the ”singular points” of f . To stress the dependence on i, j, k, the singular
points of v will be denoted by (Z l

i,j,k, P
l
i,j,k). Here the index l (again depending on i, j, k) counts the

number of singular points of vi,j,k(Z). So v is the linear piecewise function which joints the singular
points, hence vi,j,k(Z

l
i,j,k) = P l

i,j,k for every l. The function vi,j,k(Z) can be constructed by linearity
from these values. The main idea of the procedure is that the calculation of the singular points
at every node of the tree at time i can be obtained directly from the knowing of all the singular
points at time i + 1, allowing the construction of a backward procedure. Moreover, although the
number of singular points increases very fast during the backward procedure, we can reduce them
by controlling the error involved in the elimination procedure. This reduction, joined with an
important symmetry remark that reduces drastically the computations (see Remark 2), will be the
more important elements needed for obtaining a feasible procedure. Now we describe it in details.
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We assume that the difference between two observation times is constant and equal to one year
and we denote by m the number of steps of the binomial tree in every annual period. Therefore the
total number of steps of the binomial tree is n = mN . The tree method that we propose consists in
evaluating at every time step i = 0, 1, .., n the price of the simple Ratchet EIAs contract for every
possible choice of the running sum Z defined in (3).

We proceed now to the description of the simple Ratchet price value function vi,j,k(Z), i = 0, ..., n
and j, k = 0, ..., i, in terms of the running sum Z, at every node (i, j, k) of the tree structure.

The simple Ratchet price value v at maturity, as function of the running sum Z, is continuously
defined by

vn,j,k(Z) = φ(Z,GN )

where φ is the payoff function (4). vn,j,k is a piecewise linear function, defined in [1 +NF, 1+NC],
characterized by the three singular points (Z l

n,j,k, P
l
n,j,k), l = 1, 2, 3 (Z l

n,j,k is the running sum, P l
n,j,k

is the corresponding simple Ratchet price) given by: (1 +NF,GN ), (GN , GN ), (1 +NC, 1 +NC).
Remark that when GN 6∈ [1 +NF, 1 +NC], vn,j,k is constant so we have just two singular points.

Consider now the time step n−m corresponding to the reset date N − 1. Given a running sum
Z the corresponding simple Ratchet price depends on the returns of the underlying asset during the
time period [N − 1, N ]. We obtain the price at each node at time n−m using a backward induction
procedure of m steps starting from an appropriate terminal condition.

In order to describe the procedure let us fix a node (n − m, j̃, k̃) at the time step n − m.
We consider a new tree (called local tree), starting from the node (n − m, j̃, k̃), whose nodes are
(n−m+i, j̃+j, k̃+k), where i = 0, ...,m; j, k = 0, ..., i. From the generic node (n−m+i, j̃+j, k̃+k)
of the local tree the process can reach the nodes

(n−m+ i+ 1, ju, ku), (n−m+ i+ 1, ju, kd), (n−m+ i+ 1, jd, ku), (n−m+ i+ 1, jd, kd)

with probabilities puu, pud, pdu, pdd, respectively. The indexes ju, jd, ku, kd and the probabilities
puu, pud, pdu, pdd are those determined in the previous section for the global tree (see (12)) except
for one change: now the reached nodes cannot exit from the local tree. Hence multiple jumps have
to be limited to the local tree, therefore if ku > k̃ + i then we have to change such a value and the
corresponding probabilities setting ku := k̃ + i and pn−m+i,k̃+k = 1, while if kd < k̃ we set kd = k̃
and pn−m+i,k̃+k = 0. A corresponding adjustment is needed for ju, jd as well.

Given a terminal node (n, j̃ + j, k̃ + k) of the local tree starting from the node (n−m, j̃, k̃), the
Ratchet interest rate here evaluated is given by

R̂ = min

(

C,max

(

F, α

[

S(n,j̃+j,k̃+k)

S(n−m,j̃,k̃)

− 1

]))

. (13)

Let v−
n,j̃+j,k̃+k

the simple Ratchet value function at the terminal node (n, j̃ + j, k̃ + k) one instant

before the reset date N , i.e. before to consider the Ratchet interest rate of the last year. Following
Wilmott [19], no-arbitrage considerations lead to the following jump condition at each node (n, j̃ +
j, k̃ + k) reachable with m steps and starting from the node (n−m, j̃, k̃):

v−
n,j̃+j,k̃+k

(Z) = vn,j̃+j,k̃+k(Z − R̂). (14)

v−
n,j̃+j,k̃+k

is now defined in the domain [1 + (N − 1)F, 1 + (N − 1)C].

In summary, we can compute the price of simple Ratchet contract at each node (n − m, j̃, k̃),
using the following procedure:

• At time n (time m of the local tree) we initialize the local tree at all the nodes (n, j̃+ j, k̃+ k)
taking the singular points of the global tree at these nodes and shifting the abscissa of the
return R̂. The singular points become

(Z1
n,j̃+j,k̃+k

− R̂, P 1
n,j̃+j,k̃+k

), (Z2
n,j̃+j,k̃+k

− R̂, P 2
n,j̃+j,k̃+k

), (Z3
n,j̃+j,k̃+k

− R̂, P 3
n,j̃+j,k̃+k

).
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• At time n − 1 (time m − 1 of the local tree) we have to evaluate the value function v at the
nodes (n−1, j̃+j, k̃+k) for all j, k = 0, ...,m−1. To this end we have to consider the set of the
abscissae of all the singular points of the price functions v−n,ju,ku

(Z), v−n,ju,kd
(Z), v−n,jd,ku

(Z),

v−n,jd,kd
(Z). Such set becomes the set of the abscissae of the singular points of vn−1,j̃+j,k̃+k(Z).

The associated prices can be computed by

vn−1,j̃+j,k̃+k(Z) = e−ri,k∆t[puuv
−
n,ju,ku

(Z) + pudv
−
n,ju,kd

(Z) + pduv
−
n,jd,ku

(Z) + pddv
−
n,jd,kd

(Z)].

v−n,ju,ku
(Z) can be obtained by linear interpolation since v−

n,j̃+j,k̃+k
is a piecewise linear con-

tinuous function. All the other values of the previous recursion formula are computed in the
same way.

• At time n− 2, .., n−m we use backwardly the same procedure of the previous step obtaining
at the end the value function vn−m,j̃,k̃(Z) defined again in (1 + (N − 1)F, 1 + (N − 1)C).

Remark 2 The previous evaluation has to be repeated for every j̃, k̃ = 0, ..., n − m. However, a
simple trick permits us to reduce in a meaningful way the computations. At first let us remark that
R̂ (see (13)) depends on j, k but not on the indexes j̃, k̃. Moreover the probabilities puu, pud, pdu, pdd
evaluated on the local tree are independent on j̃. Observe that, on the contrary, in the global tree
the probabilities are dependent on j̃ because of the presence of possible multiple jumps and of the
corresponding treatment described in Remark 1. We can conclude that the function vn−m,j,k̃(Z) is
the same for all the choices j = 0, ..., n−m so that the use of the local tree allows us to reduce the
complexity of the procedure of one order.

After the computation of vn−m,j,k(Z) for all j, k = 0, ..., n −m, we then proceed iteratively at
each node (i, j, k) , i = n−2m,n−3m, ..,m, 0, of the global tree. At each reset date, we use again: a
local tree, the appropriate terminal no-arbitrage condition (14) at time i+m, the backward induction
procedure and the complexity reduction presented in Remark 2. At the end of the procedure we
obtain v0,0,0(1) which is the discrete lattice value of the simple Ratchet EIAs with n steps and
without early surrender risk.

The knowing of the price function at every node of our tree, allows us to treat in an easy way
the case when the early surrender risk is embedded into the simple Ratchet EIAs contract. In fact
we have to check at time i = n−m,n− 2m, ..,m, corresponding at each reset date N − 1, ..., 1, the
convenience of the early surrender option. Hence, the only difference with respect to the no early
surrender case is that at the reset date, before shifting the abscissa of the singular points we have
to modify the price function vi,j,k(Z) taking

max (φ(Z,Gi), vi,j,k(Z)) , (15)

where φ is the payoff function (6). Such new functions, denoted for sake of simplicity, again by
vi,j,k(Z) are still piecewise linear and can be easily computed. With these changes v0,0,0(1) provides
the lattice value of the simple Ratchet EIAs with early surrender risk, associated to the tree with n
steps.

The technique previously presented is convergent to the value of the Ratchet contract obtained by
the continuous bivariate model (1), (2). However, it can be problematic from a computational point
of view because of the high number of singular points generated by the procedure. We can use the
argument proposed in [7], based on the the convexity of the piecewise linear functions vi,j,k, to reduce
drastically such number controlling the error involved in the elimination procedure. Let us remark
that deleting some internal points from the sequence of the singular points which characterizes vi,j,k,
the new function is still piecewise linear and convex. If we fix a given level h > 0 for the error, we
can easily eliminate singular points in order to obtain a new piecewise linear function which differs
from the original one at most for h. Repeating this process at all the nodes of the tree the difference
between v0,0,0(1) and the new approximating value is less than nh. So it is sufficient to choose the

9



maximal level of error h depending on n and such that h(n)n → 0 as n → ∞, for obtaining the
convergence of the values obtained by the elimination procedure to the continuous value. For a
detailed discussion we refer to [7] (see the argument for obtaining the upper estimates) and [4].

6 Numerical results

In this section we will test the algorithms presented in Section 4 and Section 5 for computing the
price of the simple Ratchet EIAs under CIR++ stochastic interest rates.

We choose the parameters of the contract in a similar way as in [11]: the MCV parameters β =
0, 0.9, 1, g = 0.03, the partecipation rate α = 0.9, the local floor F = 0, the local cap C = 0.16, 0.20.
The maturity N is 7 years.
We assume that the policyholder receives, in the early surrender case, the amount

φ(Zi, Gi) = max(ξ(i, Nc)Zi, Gi), i = 1, ..., N.

According to 2009 Annuity Fact Book ([20]) we take Nc = 5 and we assume that the charge of the
cancelation decreases every years of 1%, vanishing at the year Nc + 1. Therefore

ξ(i, Nc) = 1−max{Nc + 1− i

100
, 0}, i = 1, ..., N.

The parameters of the continuous bivariate model defined in equations (1), (2) are: S0 = 100,
σS = 0.2, x0 = 0.04, θ = 0.05, k = 0.5, σ = 0.08, 0.16, ρ = −0.3, 0, 0.3. According to [11] we
consider the following initial instantaneous forward curve f(0, t) = 0.04 + 0.0045t+ 0.00015t2 and
the corresponding shift

ϕ(t) = f(0, t)− 2kθ(eth − 1)

2h+ (k + h)(eth − 1)
− x0

4h2eth

[2h+ (k + h)(eth − 1)]2

with h =
√
k2 + 2σ2 (see [3]).

We apply the expansion method of Section 4 and the singular points algorithm presented in
Section 5 for computing an estimate of the simple Ratchet EIAs price value. In the tables we will
consider n = 140, 280, 420 time steps.

The benchmark values are obtained by using a Monte Carlo method with a large number of
simulations (1 million) using the Alfonsi [1] discretization scheme for the CIR process with 700
discretization time steps. This method provide a Monte Carlo weak second-order scheme for the
Cox-Ingersoll-Ross process.

In Tables 1 we report different simple Ratchet prices without early surrender risk and without
MCV (β = 0). In Table 2 we report prices of simple Ratchet EIAs with MCV (β = 0.9, 1) without
surrender options. In Table 3 we report prices of simple Ratchet EIAs with MCV and with early
surrender risk using the proposed tree method. No benchmarks are available in the early surrender
case.

Table 1 Price EIA without MCV (β = 0) and without early surrender risk
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σ Cap Method ρ = −0.3 ρ=0 ρ=0.3

0.08 16% Exp 0.9985 0.9971 0.9957
Tree n = 140 1.0015 0.9956 0.9986
Tree n = 280 1.0009 0.9956 0.9980
Tree n = 420 1.0007 0.9978 0.9978

MC 0.9998 0.9984 0.9970

0.08 20% Exp 1.0421 1.0412 1.0403
Tree n = 140 1.0462 1.0394 1.0433
Tree n = 280 1.0452 1.0417 1.0424
Tree n = 420 1.0448 1.0423 1.0420

MC 1.0438 1.0424 1.0410

0.16 16% Exp 0.9946 0.9917 0.9890
Tree n = 140 1.0017 0.9946 0.9961
Tree n = 280 1.0011 0.9946 0.9956
Tree n = 420 1.0009 0.9968 0.9954

MC 1.0003 0.9976 0.9948

0.16 20% Exp 1.0377 1.0358 1.0034
Tree n = 140 1.0464 1.0384 1.0408
Tree n = 280 1.0454 1.0407 1.0399
Tree n = 420 1.0450 1.0414 1.0395

MC 1.0442 1.0417 1.0388
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Table 2 Price EIA with MCV and without early surrender risk
σ Cap β Method ρ = −0.3 ρ=0 ρ=0.3

0.16 16% 0.9 Tree n = 140 1.0025 0.9959 0.9974
Tree n = 280 1.0019 0.9957 0.9969
Tree n = 420 1.0017 0.9979 0.9967

MC 1.0010 0.9986 0.9960

0.16 16% 1 Tree n = 140 1.0075 1.0022 1.0040
Tree n = 280 1.0072 1.0018 1.0037
Tree n = 420 1.0072 1.0020 1.0037

MC 1.0059 1.0043 1.0024

0.16 20% 0.9 Tree n = 140 1.0472 1.0397 1.0421
Tree n = 280 1.0462 1.0418 1.0412
Tree n = 420 1.0458 1.0424 1.0408

MC 1.0449 1.0426 1.0400

0.16 20% 1 Tree n = 140 1.0514 1.0451 1.0476
Tree n = 280 1.0506 1.0469 1.0469
Tree n = 420 1.0504 1.0475 1.0467

MC 1.0490 1.0474 1.0454

Table 3 Price EIA with MCV and with early surrender risk
σ Cap β Method ρ = −0.3 ρ=0 ρ=0.3

0.16 16% 0.9 Tree n = 140 1.0403 1.0379 1.0415
Tree n = 280 1.0399 1.0376 1.0412
Tree n = 420 1.0398 1.0394 1.0411

0.16 16% 1 Tree n = 140 1.0558 1.0534 1.0535
Tree n = 280 1.0554 1.0523 1.0531
Tree n = 420 1.0554 1.0537 1.0532

0.16 20% 0.9 Tree n = 140 1.0785 1.0751 1.0802
Tree n = 280 1.0776 1.0768 1.0794
Tree n = 420 1.0773 1.0774 1.0791

0.16 20% 1 Tree n = 140 1.0879 1.0848 1.0870
Tree n = 280 1.0871 1.0855 1.0864
Tree n = 420 1.0868 1.0859 1.0861

In Tables 4-6 we report some results on the break-even participation rate (BPR), which is defined
to be the participation rate α at which the price of an EIA equals its notional principal (1$).
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Table 4 BPRs EIA without MCV (β = 0) and without early surrender risk

σ Cap Method ρ = −0.3 ρ=0 ρ=0.3

0.08 16% Exp 0.9119 0.9235 0.9360
Tree n = 140 0.8871 0.9579 0.9129
Tree n = 280 0.8933 0.9398 0.9163
Tree n = 420 0.8950 0.9151 0.9185

MC 0.9014 0.9127 0.9250

0.08 20% Exp 0.7059 0.7058 0.7057
Tree n = 140 0.6881 0.7091 0.6958
Tree n = 280 0.6926 0.6977 0.6999
Tree n = 420 0.6937 0.7011 0.7009

MC 0.6974 0.7008 0.7046

0.16 16% Exp 0.9437 0.9711 1.0030
Tree n = 140 0.8856 0.9712 0.9354
Tree n = 280 0.8920 0.9489 0.9382
Tree n = 420 0.8936 0.9221 0.9411

MC 0.8980 0.9195 0.9447

0.16 20% Exp 0.7260 0.7270 0.7280
Tree n = 140 0.6878 0.7124 0.7032
Tree n = 280 0.6923 0.7010 0.7071
Tree n = 420 0.6934 0.7041 0.7079

MC 0.6964 0.7027 0.7109

Table 5 BPRs EIA with MCV and without early surrender risk
σ Cap β Method ρ = −0.3 ρ=0 ρ=0.3

0.16 16% 0.9 Tree n = 140 0.8788 0.9559 0.9246
Tree n = 280 0.8854 0.9394 0.9266
Tree n = 420 0.8865 0.9149 0.9297

MC 0.8921 0.9117 0.9347

0.16 16% 1 Tree n = 140 0.8388 0.8691 0.8625
Tree n = 280 0.8425 0.8824 0.8689
Tree n = 420 0.8430 0.8706 0.8686

MC 0.8523 0.8639 0.8786

0.16 20% 0.9 Tree n = 140 0.6836 0.7045 0.6964
Tree n = 280 0.6875 0.6941 0.7002
Tree n = 420 0.6886 0.6979 0.7009

MC 0.6925 0.6978 0.7048

0.16 20% 1 Tree n = 140 0.6589 0.6640 0.6636
Tree n = 280 0.6609 0.6680 0.6652
Tree n = 420 0.6614 0.6666 0.6655

MC 0.6676 0.6689 0.6719

Table 6 BPRs EIA with MCV and with early surrender risk
σ Cap β Method ρ = −0.3 ρ=0 ρ=0.3

0.16 16% 0.9 Tree n = 140 0.5952 0.6037 0.5769
Tree n = 280 0.5975 0.5951 0.5784
Tree n = 420 0.5988 0.5951 0.5789

0.16 16% 1 Tree n = 140 0.3333 0.3372 0.3404
Tree n = 280 0.3354 0.3385 0.3430
Tree n = 420 0.3356 0.3401 0.3431

0.16 20% 0.9 Tree n = 140 0.5252 0.5248 0.5076
Tree n = 280 0.5272 0.5212 0.5093
Tree n = 420 0.5281 0.5218 0.5096

0.16 20% 1 Tree n = 140 0.3216 0.3211 0.3246
Tree n = 280 0.3229 0.3242 0.3263
Tree n = 420 0.3232 0.3252 0.3262

13



The previous data have been performed in double precision on a PC with processor Centrino 2
at 2.4 Ghz with 4 Gb of RAM. The time of computation of the pricing algorithm in a selected case
are reported in next table:

Table 7 Computation times for pricing EIA without early surrender risk.
Cap=16%, σ=16%, ρ = 0.3

β=0 Method Time (in seconds)
Exp 0.22

Tree n = 140 0.78
Tree n = 280 11.3
Tree n = 420 60.1

β=0.9 Method
Tree n = 140 2.43
Tree n = 280 34.1
Tree n = 420 171.6

7 Conclusions

We have introduced two different algorithms for pricing simple Ratchet EIAs in a geometric Brow-
nian dynamics with the CIR++ stochastic interest rates. The first method is based on expansion
techniques and it allows to price simple Ratchet EIAs without early surrender risk and minimum
contract value. The approximation is sharp for pricing purposes, but the behavior of the expansion
is less precise for the computations of the BPRs. The second method is a tree algorithm treating
general contract specifications like early surrender risk. Numerical comparisons indicate that the
method is reliable and accurate.
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8 Appendix. Proof of Theorem 1

The proof is based on Theorem 4.5 of Kunitomo-Takahashi [13], which establishes a general result on
an asymptotic expansion for pricing contingent claims in a general framework. The theorem applies
to our case, so we just need to evaluate the coefficients L0, L1 of the expansion for pricing simple
Ratchet EIAs without MCV and without early surrender risk.

This will be done in four steps.

1. We derive the asymptotic expansion of interest rate by applying Theorem 4.4 in [13] which is
based on the Watanabe-Yosida theory of Malliavin calculus.

2. We obtain the expression of the return of underlying asset using the results of step 1.

3. We derive an inequality, equivalent to [Rj ≥ x+α
α

], necessary for the computation of the

expectation EQ
[

e−
∫

N

0
r(s)ds (α(Rj − 1)− x)

+
]

, by using the asymptotic expansion of Step 2.

4. We obtain L0 and L1 by computing the expectations in (7) : EQ
[

e−
∫

N

0
r(s)ds (1 +NF )

]

and

EQ
[

e−
∫

N

0
r(s)ds (α(Rj − 1)− x)+

]

for j = 1, · · · , N and x = F,C.

14



8.1 Step 1. Asymptotic expansion of the interest rate

The CIR++ interest rates model (2) can be rewritten in the integral form

r(t) = r(0) + ϕ(t)− ϕ(0) +

∫ t

0

k(θ − r(s) + ϕ(s))ds+ σ

∫ t

0

√

r(s)− ϕ(s)dB2(s). (16)

From Theorem 4.4 in [13], r(t) has an asymptotic expansion as

r(t) = r(0)(t) +
∞
∑

i=1

σiAi(t), (17)

where Ai(t) = 1
i!

∂ir(t)
∂σi |σ=0, r

(0)(t) denotes r(t) with volatility σ = 0 and it satisfies the equation

r(0)(t) = r(0)+ϕ(t)−ϕ(0)+
∫ t

0 k[θ−r(0)(s)+ϕ(s)]ds, so that r(0)(t) = e−kt[r(0)−θ−ϕ(0)]+θ+ϕ(t).
Differentiating (16) with respect to σ leads to

∂r(t)

∂σ
= −

∫ t

0

k
∂r(s)

∂σ
ds+

∫ t

0

√

r(s)− ϕ(s)dB2(s) + σ

∫ t

0

1

2
√

r(s)− ϕ(s)

∂r(s)

∂σ
dB2(s),

then letting σ = 0 in the above equation, we obtain

A1(t) = −k

∫ t

0

A1(s)ds+

∫ t

0

√

r(0)(s)− ϕ(s)dB2(s),

and solving the above equation we have

A1(t) =

∫ t

0

e−k(t−s)
√

r(0)(s)− ϕ(s)dB2(s). (18)

Note that A1(t) is a Gaussian process with A1(t) ∼ N
(

0,
∫ t

0
e−2k(t−s)[r(0)(s)− ϕ(s)]ds

)

.

8.2 Step 2. Expansion expression of the equity value return

By Itô’s lemma, integrating (1) from 0 to t one has

log[S(t)/S(0)] =

∫ t

0

[

r(s)−
1

2
σ2
S

]

ds+

∫ t

0

σSdB1(s). (19)

Substituting r(s) with its expansion (17) we obtain

S(t) = S(0) exp

{

∫ t

0

[

r(0)(s)− 1

2
σ2
S +

∞
∑

i=1

σiAi(s)

]

ds+

∫ t

0

σSdB1(s)

}

,

so that

Rj =
S(j)

S(j − 1)
= exp

{

∫ j

j−1

[

r(0)(u)−
1

2
σ2
S +

∞
∑

i=1

σiAi(u)

]

du+ σS [B1(j)−B1(j − 1)]

}

. (20)
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8.3 Step 3. Equivalent inequality of [Rj ≥ x+α

α
]

Since the payoff function of the simple Ratchet EIAs is not linear nor negative, its valuation should
be done by taking into account the condition Rj ≥ x+α

α
which is equivalent to

exp

{

∫ j

j−1

[

r(0)(u)−
1

2
σ2
S +

∞
∑

i=1

σiAi(u)

]

du+ σS [B1(j)−B1(j − 1)]

}

≥
x+ α

α

⇔ σS [B1(j)−B1(j − 1)] ≥ log
(x+ α

α

)

−

∫ j

j−1

[

r(0)(u) +

∞
∑

i=1

σiAi(u)−
σ2
S

2

]

du

⇔ σS [B1(j)−B1(j − 1)] ≥ log
(x+ α

α

)

−

∫ j

j−1

[

r(0)(u)−
σ2
S

2

]

du−

∞
∑

i=1

σi

∫ j

j−1

Ai(u)du.

⇔ Nj0 ≥ log
(x+ α

α

)

−

∫ j

j−1

[

r(0)(u)−
σ2
S

2

]

du− σNj1 −
∞
∑

i=2

σi

∫ j

j−1

Ai(u)du (21)

where Nj0 = σS [B1(j)−B1(j − 1)], Nj1 =
∫ j

j−1 A1(t)dt. Obviously Nj0 follows a Gaussian distribu-

tion, and by change of integration order and by (18) we have

Nj1 =

∫ j

j−1

∫ t

0

e−k(t−s)
√

r(0)(s)− ϕ(s)dB2(s)dt

=

∫ j−1

0

∫ j

j−1

e−k(t−s)
√

r(0)(s)− ϕ(s)dtdB2(s) +

∫ j

j−1

∫ j

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dtdB2(s).

Then the variances of Nj0 and Nj1 are Σ
(j)
00 = Var[Nj0] = σ2

S and

Σ
(j)
11 = Var[Nj1] =

∫ j−1

0

(
∫ j

j−1

e−k(t−s)
√

r(0)(s)− ϕ(s)dt

)2

ds+

∫ j

j−1

(
∫ j

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dt

)2

ds

(22)
respectively. Their covariance is

Σ
(j)
01 = Cov[Nj0, Nj1] = σSρ

∫ j

j−1

∫ j

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dtds. (23)

By Gaussian distribution properties, we know that the conditional distribution

Nj1 |Nj0=x∼ N

(

Σ
(j)
01

Σ
(j)
00

x,Σ
(j)
11 −

Σ
(j)
01 Σ

(j)
01

Σ
(j)
00

)

,

hence Nj1 |Nj0=x=
Σ

(j)
01

Σ
(j)
00

x+Nj2

√

∣

∣

∣

∣

Σ
(j)
11 − Σ

(j)
01 Σ

(j)
01

Σ
(j)
00

∣

∣

∣

∣

, where Nj2 ∼ N(0, 1) is independent of Nj0.

By replacing Nj1 with
Σ

(j)
01

Σ
(j)
00

Nj0+Nj2

√

∣

∣

∣

∣

Σ
(j)
11 − Σ

(j)
01 Σ

(j)
01

Σ
(j)
00

∣

∣

∣

∣

in the equivalent inequality (21), we have

that Rj ≥ x+α
α

is equivalent to

Nj0 ≥ log
(x+ α

α

)

−

∫ j

j−1

[

r(0)(s)−
σ2
S

2

]

ds−σ





Σ
(j)
01

Σ
(j)
00

Nj0 +Nj2

√

√

√

√

∣

∣

∣

∣

∣

Σ
(j)
11 −

Σ
(j)
01 Σ

(j)
01

Σ
(j)
00

∣

∣

∣

∣

∣



−
∞
∑

i=2

σi

∫ j

j−1

Ai(s)ds.

Rearranging the above inequality we have

Nj0

[

1 + σ
Σ

(j)
01

Σ
(j)
00

]

≥ log
(x+ α

α

)

−

∫ j

j−1

[

r(0)(s)−
σ2
S

2

]

ds− σNj2

√

√

√

√

∣

∣

∣

∣

∣

Σ
(j)
11 −

Σ
(j)
01 Σ

(j)
01

Σ
(j)
00

∣

∣

∣

∣

∣

−
∞
∑

i=2

σi

∫ j

j−1

Ai(s)ds,
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then by Taylor’s expansion 1
1+x

=
∑∞

i=0(−x)i, we have the equivalent inequality of (21)

Nj0

≥
1

1 + σ
Σ

(j)
01

Σ
(j)
00







log
(x+ α

α

)

−

∫ j

j−1

[

r(0)(s)−
σ2
S

2

]

ds− σNj2

√

√

√

√

∣

∣

∣

∣

∣

Σ
(j)
11 −

Σ
(j)
01 Σ

(j)
01

Σ
(j)
00

∣

∣

∣

∣

∣

−

∞
∑

i=2

σi

∫ j

j−1

Ai(s)ds







=
∞
∑

k=0

(

−σ
Σ

(j)
01

Σ
(j)
00

)k






log
(x+ α

α

)

−

∫ j

j−1

[

r(0)(s)−
σ2
S

2

]

ds− σNj2

√

√

√

√

∣

∣

∣

∣

∣

Σ
(j)
11 −

Σ
(j)
01 Σ

(j)
01

Σ
(j)
00

∣

∣

∣

∣

∣

−
∞
∑

i=2

σi

∫ j

j−1

Ai(s)ds







= Θ
(j)
0 (x) + σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

]

+
∞
∑

k=2

σk
[

Nj2Θ
(j)
k1 +Θ

(j)
k2 (x)

]

, (24)

where

Θ
(j)
0 (x) = log

(x+ α

α

)

−

∫ j

j−1

[

r(0)(s)−
σ2
S

2

]

ds,Θ
(j)
11 = −

√

√

√

√

∣

∣

∣

∣

∣

Σ
(j)
11 −

Σ
(j)
01 Σ

(j)
01

Σ
(j)
00

∣

∣

∣

∣

∣

, and Θ
(j)
12 (x) = −

Σ
(j)
01

Σ
(j)
00

Θ
(j)
0 (x),

for k = 2, 3, · · ·

Θ
(j)
k1 = −

√

√

√

√

∣

∣

∣

∣

∣

Σ
(j)
11 −

Σ
(j)
01 Σ

(j)
01

Σ
(j)
00

∣

∣

∣

∣

∣

[

−
Σ

(j)
01

Σ
(j)
00

]k−1

, Θ
(j)
k2 (x) =

[

−
Σ

(j)
01

Σ
(j)
00

]k

Θ
(j)
0 (x)−

k−1
∑

i=1

[

−
Σ

(j)
01

Σ
(j)
00

]k−1−i
∫ j

j−1

Ai+1(s)ds.

In the following calculation, we will ignore the higher order term in the right-hand side of the
equivalent inequality (24) and the error term of the approximation converges to 0 when σ → 0.

8.4 Step 4. Computation of L0 and L1

8.4.1 Computation of EQ
[

e−
∫

N

0
r(s)ds

]

By the asymptotic expression (17) for the interest rate r(s) and by applying Taylor’s expansion to

function e−x around x = −
∫ N

0 r(0)(s)ds, we have

E
Q
[

e−
∫

N
0 r(s)ds

]

= E
Q
{

e−
∫

N
0 [r(0)(s)+

∑

∞

i=1 σiAi(s)]ds
}

= E
Q







e−
∫

N
0 r(0)(s)ds





∞
∑

k=0

1

k!

(

−
∞
∑

i=1

σi

∫ N

0

Ai(s)ds

)k










=
∞
∑

k=0

σk
E

Q(Yk), (25)

where the first three terms of the series {Yk; k = 0, 1, · · · } are given explicitly as follows:

Y0 = exp

[

−

∫ N

0

r(0)(s)ds

]

, Y1 = −Y0

∫ N

0

A1(s)ds, Y2 = Y0

[

1

2

(
∫ N

0

A1(s)ds

)2

−

∫ N

0

A2(s)ds

]

.

8.4.2 Computation of EQ
[

e−
∫

N

0
r(s)ds (α(Rj − 1)− x)

+
]

, for j = 1, · · · , N and x = F,C

Let 1(ω) be the indicator function of the event ω, we have

E
Q
[

e−
∫

N
0 r(s)ds (α(Rj − 1) − x)+

]

(26)

= αEQ
[

e−
∫

N
0 r(s)ds

(

Rj −
α+ x

α

)

1(Rj≥
α+x
α )

]

= αEQ
[

e−
∫

N
0 r(s)dsRj1(Rj≥

α+x
α )

]

− (α+ x)EQ
[

e−
∫

N
0 r(s)ds

1(Rj≥
α+x
α )

]

.
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Applying the asymptotic expansion of the interest rate r(s) and the return Rj in section 8.1 and

8.2, the term e−
∫

N

0
r(s)dsRj inside the first expectation of the above formula can be rewritten as

follows:

e−
∫

N
0 r(s)dsRj

= exp

{

−

∫

(0,j−1)∪(j,N)

[

r(0)(s) +
∞
∑

i=1

σiAi(s)

]

ds−

∫ j

j−1

1

2
σ2
Sds+Nj0

}

= exp

[

−

∫

(0,j−1)∪(j,N)

r(0)(s)ds−

∫ j

j−1

1

2
σ2
Sds+Nj0

]

exp

[

−

∞
∑

i=1

σi

∫

(0,j−1)∪(j,N)

Ai(s)ds

]

Applying Taylor’s expansion to the function e−x around x = 0, we have

e−
∫

N
0 r(s)dsRj (27)

= e
−

∫

(0,j−1)∪(j,N) r(0)(s)ds− 1
2
σ2
S+Nj0

∞
∑

k=0

(

−
∑∞

i=1 σ
i
∫

(0,j−1)∪(j,N)
Ai(s)ds

)k

k!
=

∞
∑

k=0

σkXjk.

The first three terms of the series {Xjk; k = 0, 1, · · · } are given by:

Xj0 = e
−

∫

(0,j−1)∪(j,N) r(0)(s)ds− 1
2
σ2
S+Nj0 = Cje

Nj0 , Xj1 = −Xj0

∫

(0,j−1)∪(j,N)

A1(s)ds,

Xj2 = Xj0

[

−

∫

(0,j−1)∪(j,N)

A2(s)ds+
1

2

(

∫

(0,j−1)∪(j,N)

A1(s)ds

)2]

,

where Cj = exp
[

−
∫

(0,j−1)∪(j,N)
r(0)(s)ds − 1

2σ
2
S

]

is a deterministic term which can be computed

explicitly from the given model parameters.

Following similar arguments used for (25) and applying (27) to (26), we have

E
Q
[

e−
∫

N
0 r(s)ds (α(Rj − 1)− x)+

]

= α
∞
∑

k=0

σk
E

Q
[

Xjk1(Rj≥
α+x
α )

]

− (α+ x)
∞
∑

k=0

σk
E

Q
[

Yk1(Rj≥
α+x
α )

]

. (28)

To derive L0, L1 we need to calculate EQ
[

Xjk1(Rj≥
α+x
α )

]

and EQ
[

Yk1(Rj≥
α+x
α )

]

for k = 0, 1.

(a) Computation of EQ
[

Xj01(Rj≥
α+x
α )

]

and EQ
[

Y01(Rj≥
α+x
α )

]

Applying the equivalent inequality (24) for Rj ≥ α+x
α

and ignoring the higher order terms in
right-hand side of this inequality, we have

E
Q
[

Xj0I(Rj≥
α+x
α )

]

= E
Q

[

Cje
Nj0I(

Nj0≥Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

]

+
∑

∞

i=2 σi
[

Nj2Θ
(j)
i1 +Θ

(j)
i2 (x)

])

]

= E
Q

[

Cje
Nj0I(

Nj0≥Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

])

]

+ o(σ),

and

E
Q
[

Y0I(Rj≥
α+x
α )

]

= E
Q

[

Y0I
(

Nj0≥Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

])

]

+ o(σ).

Note that Cj ,Θ
(j)
0 (x),Θ

(j)
11 ,Θ

(j)
12 (x) are deterministic functions, Nj0 is a random variable with

Gaussian distribution N(0,Σ
(j)
00 ) and independent of standard Normal random variable Nj2. Denote

18



by f
Σ

(j)
00
(x) the density function of Nj0 and Φ(x) the standard Normal distribution function. Taking

conditional expectation with respect to Nj2, we have

E
Q
[

Xj0I(Rj≥
α+x
α )

]

= CjE
Q

[

∫ ∞

Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

]

exf
Σ

(j)
00

(x)dx

]

+ o(σ)

= Cje
Σ
(j)
00
2 E

Q







1− Φ





Θ
(j)
0 (x)− Σ

(j)
00

√

Σ
(j)
00

+ σ





Nj2Θ
(j)
11 +Θ

(j)
12 (x)

√

Σ
(j)
00















+ o(σ),

and

E
Q
[

Y0I(Rj≥
α+x
α )

]

= Y0 − Y0E
Q







Φ



H
(j)
0 (x) + σ





Nj2Θ
(j)
11

√

Σ
(j)
00

+H
(j)
12 (x)















+ o(σ),

where

G
(j)
0 (x) =

Θ
(j)
0 (x)− Σ

(j)
00

√

Σ
(j)
00

, H
(j)
0 (x) =

Θ
(j)
0 (x)
√

Σ
(j)
00

, and H
(j)
12 (x) =

Θ
(j)
12 (x)
√

Σ
(j)
00

.

Again by Taylor’s expansion of the distribution function Φ(y) around the points y = G
(j)
0 (x) and

y = H
(j)
0 (x) respectively, we get

E
Q
[

Xj0I(Rj≥
α+x
α )

]

= Cje
Σ
(j)
00
2 E

Q







1−
∞
∑

n=0

DnΦ
[

G
(j)
0 (x)

]

n!



σ





Nj2Θ
(j)
11

√

Σ
(j)
00

+H
(j)
12 (x)









n





+ o(σ)

= Cje
Σ
(j)
00
2 −Cje

Σ
(j)
00
2 Φ

[

G
(j)
0 (x)

]

− σCje
Σ
(j)
00
2 D1Φ

[

G
(j)
0 (x)

]

H
(j)
12 (x) + o(σ), (29)

and

E
Q
[

Y0I(Rj≥
α+x
α )

]

= Y0 − Y0E
Q







∞
∑

n=0

DnΦ
[

H
(j)
0 (x)

]

n!



σ





Nj2Θ
(j)
11

√

Σ
(j)
00

+H
(j)
12 (x)









n





+ o(σ)

= Y0 − Y0Φ
[

H
(j)
0 (x)

]

− σY0D
1Φ
[

H
(j)
0 (x)

]

H
(j)
12 (x) + o(σ), (30)

where DnΦ(x), n = 1, 2, · · · denote the nth derivative of Φ(x).

(b) Computation of EQ
[

Xj11(Rj≥
α+x
α )

]

and EQ
[

Y11(Rj≥
α+x
α )

]

In order to compute EQ
[

Xj11(Rj≥
α+x
α )

]

and EQ
[

Y11(Rj≥
α+x
α )

]

, we introduce the notations

Nj3, Nj4, Nj5.

Nj3 =

∫ j−1

0

A1(t)dt =

∫ j−1

0

∫ j−1

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dtdB2(s),

Nj4 =

∫ N

j

A1(t)dt =

∫ j

0

∫ N

j

e−k(t−s)
√

r(0)(s)− ϕ(s)dtdB2(s)

+

∫ N

j

∫ N

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dtdB2(s),

Nj5 =

∫ N

0

A1(t)dt =

∫ N

0

∫ N

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dtdB2(s).
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The variance of Nji, i = 3, 4, 5 is

Σ
(j)
33 = Var[Nj3] =

∫ j−1

0

(
∫ j−1

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dt

)2

ds, (31)

Σ
(j)
44 = Var[Nj4]

=

∫ j

0

(
∫ N

j

e−k(t−s)
√

r(0)(s)− ϕ(s)dt

)2

ds+

∫ N

j

(
∫ N

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dt

)2

ds,

Σ
(j)
55 = Var[Nj5] =

∫ N

0

(
∫ N

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dt

)2

ds,

and the covariances between Nj0 and Nji, i = 3, 4, 5, respectively, are

Σ
(j)
03 = Cov(Nj0, Nj3) = 0, (32)

Σ
(j)
04 = Cov(Nj0, Nj4) = σSρ

∫ j

j−1

∫ N

j

e−k(t−s)
√

r(0)(s)− ϕ(s)dtds,

Σ
(j)
05 = Cov(Nj0, Nj5) = σSρ

∫ j

j−1

∫ N

s

e−k(t−s)
√

r(0)(s)− ϕ(s)dtds.

Note that for i = 3, 4, 5, Nji follows a Gaussian distribution. By Gaussian distribution proper-

ties, we have under the condition Nj0 = x, the conditional distribution of Nji, Nji =
Σ

(j)
0i

Σ
(j)
00

x +

Nj

√

∣

∣

∣

∣

Σ
(j)
ii − Σ

(j)
0i Σ

(j)
0i

Σ
(j)
00

∣

∣

∣

∣

= a
(j)
i x + Njb

(j)
i , where Nj ∼ N(0, 1) and independent on Nj0 and a

(j)
i =

Σ
(j)
0i /Σ

(j)
00 , b

(j)
i =

√

∣

∣

∣

∣

Σ
(j)
ii − Σ

(j)
0i Σ

(j)
0i

Σ
(j)
00

∣

∣

∣

∣

.

By definition of Xj1 and Y1, then

Xj1 = −Xj0

∫

(0,j−1)∪(j,N)

A1(t)dt = −Cje
Nj0(Nj3 +Nj4) and Y1 = −Y0

∫ N

0

A1(t)dt = −Y0Nj5.

Recalling the argument about relation between Nj0 and Nj3, Nj4 and Nj5, and using the equivalent
inequality of Rj ≥ α+x

α
, we have

E
Q
[

Xj1I(Rj≥
α+x
α )

]

= E
Q

[

−Cje
Nj0Nj3I

(

Nj0≥Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

])

]

+E
Q

[

−Cje
Nj0Nj4I

(

Nj0≥Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

])

]

+ o(σ)

= −CjE
Q

[

∫ ∞

Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

]

ex
[

a
(j)
3 x+Njb

(j)
3

]

f
Σ

(j)
00

(x)dx

]

−CjE
Q

[

∫ ∞

Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

]

ex
[

a
(j)
4 x+Njb

(j)
4

]

f
Σ

(j)
00

(x)dx

]

+ o(σ),

and

E
Q
[

Y1I(Rj≥
α+x
α )

]

= E
Q

[

−Y0Nj5I
(

Nj0≥Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

])

]

+ o(σ)

= −Y0E
Q

[

∫ ∞

Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

]

[

a
(j)
5 x+Njb

(j)
5

]

f
Σ

(j)
00

(x)dx

]

+ o(σ).
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Since Nj is independent of Nji for i = 0, 1, · · · , 5 and its expectation is 0, then

E
Q
[

Xj1I(Rj≥
α+x
α )

]

= −Cj

[

a
(j)
3 + a

(j)
4

]

E
Q

[

∫ ∞

Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

]

exxf
Σ

(j)
00

(x)dx

]

+ o(σ)

= −Cj

[

a
(j)
3 + a

(j)
4

]

√

Σ
(j)
00

2π
e

Σ
(j)
00
2 E

Q






exp






−

[

Θ
(j)
0 (x)− Σ

(j)
00 + σ

(

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

)]2

2Σ
(j)
00













+Cj

[

a
(j)
3 + a

(j)
4

]

Σ
(j)
00 e

Σ
(j)
00
2 E

Q







Φ



G
(j)
0 (x) + σ





Nj2Θ
(j)
i1

√

Σ
(j)
00

+H
(j)
i2 (x)







− 1







+ o(σ),

and

E
Q
[

Y1I(Rj≥
α+x
α )

]

= −Y0a
(j)
5 E

Q

[

∫ ∞

Θ
(j)
0 (x)+σ

[

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

]

xf
Σ

(j)
00

(x)dx

]

+ o(σ)

= −Y0a
(j)
5

√

Σ
(j)
00

2π
E

Q






exp






−

[

Θ
(j)
0 (x) + σ

(

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

)]2

2Σ
(j)
00












+ o(σ).

Applying Taylor’s expansion to the function e−y around y =
(Θ

(j)
0 (x)−Σ

(j)
00 )2

2Σ
(j)
00

and y =
(Θ

(j)
0 (x))2

2Σ
(j)
00

,

and also to the function Φ(y) around the point y = G
(j)
0 (x), we have

E
Q
[

Xj1I(Rj≥
α+x
α )

]

= −Cj

[

a
(j)
3 + a

(j)
4

]

√

Σ
(j)
00

2π
e

Σ
(j)
00
2

−

(

Θ
(j)
0 (x)−Σ

(j)
00

)2

2Σ
(j)
00

[

1− σG
(j)
0 (x)H

(j)
12 (x) + o(σ)

]

+Cj

[

a
(j)
3 + a

(j)
4

]

Σ
(j)
00 e

Σ
(j)
00
2

{

Φ
[

G
(j)
0 (x)

]

+ σD1Φ
[

G
(j)
0 (x)

]

H
(j)
12 (x) + o(σ)− 1

}

+ o(σ)

= Cj

[

a
(j)
3 + a

(j)
4

]

e
Σ
(j)
00
2















Σ
(j)
00 Φ

[

G
(j)
0 (x)

]

−

√

Σ
(j)
00

2π
e
−

(

Θ
(j)
0

(x)−Σ
(j)
00

)2

2Σ
(j)
00 − Σ

(j)
00















(33)

+σCj

[

a
(j)
3 + a

(j)
4

]

e
Σ
(j)
00
2















Σ
(j)
00 D

1Φ
[

G
(j)
0 (x)

]

H
(j)
12 (x) +

√

Σ
(j)
00

2π
e
−

(

Θ
(j)
0 (x)−Σ

(j)
00

)2

2Σ
(j)
00 G

(j)
0 (x)H

(j)
12 (x)















+ o(σ),

and

E
Q
[

Y1I(Rj≥
α+x
α )

]

= −Y0a
(j)
5

√

Σ
(j)
00

2π
E

Q






exp






−

[

Θ
(j)
0 (x) + σ

(

Nj2Θ
(j)
11 +Θ

(j)
12 (x)

)]2

2Σ
(j)
00












+ o(σ)

= −Y0a
(j)
5

√

Σ
(j)
00

2π
e
−

Θ
(j)
0

(x)2

2Σ
(j)
00

[

1− σH
(j)
0 (x)H

(j)
12 (x)

]

+ o(σ). (34)

To end up the computation of EQ
[

e−
∫

N

0
r(s)ds (α(Rj − 1)− x)

+
]

, we just need to apply formulas

(29), (30), (33) and (34) into (28). So that

E
Q
[

e−
∫

N
0 r(s)ds (α(Rj − 1)− x)+

]

= αEQ
[

Xj01(Rj≥
α+x
α )

]

− (α+ x)EQ
[

Y01(Rj≥
α+x
α )

]

+σ
{

αEQ
[

Xj11(Rj≥
α+x
α )

]

− (α+ x)σEQ
[

Y11(Rj≥
α+x
α )

]}

+ o(σ)

= M0(j, x) + σM1(j, x) + o(σ), (35)
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where

M0(j, x) = αCje
Σ
(j)
00
2

(

1− Φ
[

G
(j)
0 (x)

])

− (α+ x)Y0

(
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,
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G
(j)
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]
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(j)
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]

+ (α+ x)Y0
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00

2π
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Θ
(j)
0 (x)2

2Σ
(j)
00 +D1Φ
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 .

Finally from (7) we can conclude that

L0 = (1 +NF )Y0 +
N
∑

j=1

[M0(j, F )−M0(j, C)]

L1 =

N
∑

j=1

[M1(j, F )−M1(j, C)] .
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