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Abstract

The discrete procedures for pricing Parisian/ParAsian options depend, in general, by three
dimensions: time, space, time spent over the barrier. Here we present some combinatorial and
lattice procedures which reduce the computational complexity to second order. In the European
case the reduction was already given by Lyuu-Wu [11] and Li-Zhao [10], in this paper we present
a more efficient procedure in the Parisian case and a different approach (again of order 2) in the
ParAsian case.

In the American case we present new procedures which decrease the complexity of the pricing
problem for the Parisian/ParAsian knock-in options.

The reduction of complexity for Parisian/ParAsian knock-out options is still an open problem.

Keywords: Parisian options, ParAsian options, tree methods, binomial methods, combinatorial formulas.

Introduction

Parisian options are barrier options which can knocked in or out depending on time that the underlying
asset has spent over a barrier. Such a time can be counted either consecutively or cumulatively. In
the former case (Parisian contracts) the clock counting the time is reset as soon as the underlying
asset goes down the barrier, in the latter case (ParAsian contracts) the clock is not reset but continues
ticking as long as the underlying asset is beyond the barrier.

There are several approaches for pricing Parisian and ParAsian options. Haber and al. [9] and
Vetzal-Forsyth [12] introduced a Partial Differential Equation (PDE). They considered a three dimen-
sional PDE problem (time, asset price and time spent over the barrier) which can be solved using
finite differences or finite elements methods. The PDE approach covers both Parisian and ParAsian
options as well as the case of early exercise features (American options).

A different approach consists in the use of binomial or trinomial lattice techniques. In the Cox,
Ross, Rubinstein [4] framework, a binomial tree can incorporate the Parisian/ParAsian feature by
considering the paths for which the duration condition is satisfied.

In the discrete technique there are different ways to count the time spent over the barrier: we can
count the nodes of the path which lies over the barrier (”counting nodes” approach) or the number of
time steps which stays completely over the barrier (”counting steps”). In the Parisian case the two
approaches are equivalent, but in the ParAsian case the counting methods are different.

Avellaneda-Wu [1] use a convergent trinomial lattice in order to price European Parisian options.
The procedure, as in the PDE case, has computational complexity of order O(n3), where n is the
number of time steps of the tree. More recently Lyuu-Wu [11] proposed a combinatorial binomial
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approach which permits to obtain a procedure of orderO(n2) for the European Parisian case, improving
the algorithm of Costabile [3] of complexity O(n3). All such techniques cannot be applied to the
ParAsian case. Li-Zhao [10] provided a new combinatorial approach based on generating functions
and Chung-Feller counting theorem. The Chung-Feller Theorem can be applied since they use the
”counting steps” approach. They obtain a procedure of order O(n

5
2 ) in the Parisian case and of order

O(n2) in the ParAsian case.
We propose here a different binomial tree combinatorial approach which allows us to obtain a

procedure of order O(n2) both for European Parisian. and ParAsian options. In the ParAsian case
we use a ”counting node approach” which seems more related to the discrete framework, proving a
procedure which is completely different from the one of Li-Zhao [10].

Furthermore we are able to treat the Parisian/ParAsian knock-in American case with a second
order complexity procedure as well. The possibility of reducing the complexity of the algorithms to
the second order in the Parisian/ParAsian knock-out American case remains an open problem.

It is well know that the use of the binomial method for pricing barrier options is problematic from
the computational point of view. Costabile [3] and Lyuu-Wu [11] use the Boyle-Lau [2] technique in
order to overcome such a problem. This method, based on the idea to choose trees with a line of nodes
closest as possible to the barrier, permits to obtain sufficiently precise estimates, but it is problematic
in the case of a barrier closed to the initial value of the underlying asset (”near barrier problem”).
Here we use the algorithm proposed in Gaudenzi-Zanette [8] in order to further increase the efficiency
of the numerical procedures presented for the Parisian/ParAsian options. Such an algorithm is based
on a backward procedure where the nodes of the tree are generated from the barrier and it permits
to overcome the problem related to the specification error of the barrier (see Figlewsky-Gao [6]) and
to treat the near barrier problem in a natural way.

The paper is organized as follows: in Section 1 we present the model of the risk asset and the option
pricing problem; in Section 2 we present the proposed algorithms for the European Parisian/ParAsian
options; in Section 3 we introduce the algorithm for pricing Parisian/ParAsian American knock-in
options. Finally, in Section 4, we provide a comparison of the results obtained by such techniques
with the tree methods and finite difference methods proposed in the past literature.

1 Model and tree structure

1.1 The model

In this paper, we consider a market model where the evolution of a risky asset is governed by the
Black-Scholes stochastic differential equation

dSt

St
= (r − δ)dt+ σdBt, S0 = s0, (1)

where (Bt)0≤t≤T is a standard Brownian motion, under the risk neutral measure Q. The nonnegative
constant r is the interest rate, σ is the volatility of the risky asset and δ is the continuous dividend
yield. T is the time to maturity and we will denote by K the strike of the option.

For pricing Parisian/ParAsian options in this lognormal model, we consider now a binomial ap-
proach. Let n be the number of steps of the binomial tree and ∆T = T/n the corresponding time-step.

The standard discrete binomial process is given by

S(i+1)∆T = Si∆TYi+1, 0 ≤ i ≤ n− 1,
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where the random variables Y1, . . . , Yn are independent and identically distributed with values in the
set {u, d}. Let us denote by π = P(Yn = u) the probability of an up jump and by ρ = e−r∆T the
discount factor.

The Cox-Ross-Rubinstein tree (see [4]) corresponds to the choice u = 1
d = eσ

√
∆T and

π =
e(r−δ)∆T − e−σ

√
∆T

eσ
√
∆T − e−σ

√
∆T

.

We shall consider Parisian-style options (which means Parisian or ParAsian options) with barrier B
and window period W . For sake of conciseness, in the sequel we shall consider only ”up” barriers, the
cases of ”down” barrier can be treated in a similar way. In the Parisian knock-out case the barrier
option vanishes if the price of the underlying asset remain for a period longer than the window period
W over the barrier. In the knock-out ParAsian case the barrier option expires if the total time spent
over the barrier is greater than W (hence the ”Parisian” price is greater than the ”ParAsian” price).
Correspondingly in the knock-in case the previous windows period conditions activate the barrier. In
the American case the option may be exercised at every time for which the Parisian-style contract is
active.

Parisian-style options need pricing algorithms of barrier options. For this purpose we use a tree
structure adapted to this case.

1.2 Tree structure for barrier options

The tree structure previously introduced requires some adjustments in the barrier case. In this section
we will discuss the binomial tree that will be used for our pricing problems. We will use the approach
introduced in [8] in order to treat efficiently the problem of the specification error on the barrier due
to the binomial method (see [2]).

We assume that the number n of time steps of the tree is even and we construct a tree with nodes
whose underlying is

Si,j = Bu2j−i, with i = 0, ..., n.

In the usual CRR tree one has j = 0, ..., i whereas here j has a different range since the tree is enlarged
and translated (see Figure 1). In fact we need that at time 0, s0 lies between four nodes of the tree,
two over s0 and two under s0, in order to perform a four points interpolation at s0 which will provide
the price of the option.

To this end we denote by jS the largest even integer j such that Buj ≤ s0. Then we take

jmin =
jS
2

(2)

so that j at time step i varies between jmin − 1 and jmin + i+ 2.
In this way at time t = 0 we will obtain four nodes S0,jmin+j , j = −1, 0, 1, 2, with underlying

assets: BujS+2j , j = −1, 0, 1, 2. The price at s0 will be computed by interpolating (by using Lagrange
interpolation method) the option prices evaluated in these four nodes at s0. When jS = −2 [resp.
jS = 0] hence Bu−2 ≤ s0 < B [B ≤ s0 < Bu2], we will interpolate using only the 3 points of underlying
asset Bu−4, Bu−2, B [B,Bu2, Bu4]. This simple approach permits us to treat easily and efficiently
the ’near-barrier’ problem, that occurs when the initial asset price is very close to the barrier.
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Figure 1: The tree structure

2 Second order binomial algorithms for Parisian/ParAsian options
in the European case

We propose here binomial procedures of computational complexity O(n2) for European Parisian and
ParAsian options. In the Parisian case we propose a modification of the Avellaneda-Wu [1] tree method
which permits us to reduce the complexity of the algorithm to the order 2. A second order procedure
in this case has been already obtained by a different technique by Lyuu-Wu [11]. On the contrary the
Avellaneda-Wu and Lyuu-Wu procedures are not applicable to the ParAsian case. Moreover in the
ParAsian case there are not lattice algorithms available in literature with complexity O(n2). The finite
difference procedure of Haber et al [9], solving the PDE associated to the ParAsian case is of order
O(n3). To this purpose, we introduce here a new backward programming algorithm, of complexity
O(n2), which exploits appropriate combinatorial formulas available in Gaudenzi [7].

All the procedures here introduced could be applied on a standard CRR tree, but we will apply it to
the tree described in the previous section, in such a way we can evaluate the price of the Parisian-style
options with a more precise technique.

We will consider the cases of European Parisian and ParAsian up-and-out call options. The knock-
and-in case can be easily obtained by the parity conditions for knock-and-in and knock-and-out barrier
options holding in the European case, in the case of Parisian/ParAsian options the only difference is
that we have to consider the sum of an up-and-out call option with time period W and an up-and-in
call option with the same time period W . The treatments for down or put options are similar.

In the sequel we set

l = int(
W

T
n)

l represent the window period in the discrete setting. We also assume l < n. This means that a knock-
out Parisian option will be active if there are not more than l nodes (counted either consecutively or
cumulatively) which lies over the barrier. ”Over the barrier” means the weak inequality, that is either
on the barrier or strictly over the barrier. Similarly a knock-in Parisian option will become active if
there are at least l + 1 nodes which lies over the barrier.

2.1 European Parisian options

We will use a backward dynamic programming procedure which considers only the nodes of the tree
lying either exactly on the barrier or below to the barrier, with a particular treatment in the case for
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which s0 > B.
For the nodes strictly below the barrier we simply use the standard backward induction procedure

vi(S) = ρ[πvi+1(Su) + (1− π)vi+1(Sd)] (3)

where vi(S) denotes the European Parisian option price at time i associated to the node with under-
lying asset S.

For the nodes lying exactly on the barrier (where the recursion formula (3) does not hold) we will
compute the option price value by considering all the possible paths starting from these nodes and
reaching a node lying below the barrier with a number of steps less or equal to l.

To this end we first need to evaluate the number of the paths which stay over a barrier. At first
we consider the number of all paths starting from the level Bum, arriving at level Buj , m, j ≥ 0, after
s time steps and staying always over the barrier lying at the level B. Such number, which can be
evaluated by the ”reflection principle” (see Feller [5]) from which we get(

s
s+m−j

2

)
−

(
s

s+m+j+2
2

)
. (4)

We must have s +m + j even otherwise the final node is not reachable and |m − j| ≤ s. Moreover,
if m + j + 2 > s all the paths lie always over the barrier and the second binomial coefficient in (4)
vanishes.

In the particular case j = 0 we get

Bs,m =

(
s

s+m
2

)
−

(
s

s+m+2
2

)
=

2m+ 2

s+m+ 2

(
s

s+m
2

)
. (5)

Here, we have used the same notations of [7]. When m = 0, s must be even, so by replacing s with 2s
the previous formula becomes

cs =
1

s+ 1

(
2s

s

)
. (6)

cs counts the number of all the possible paths of 2s steps, starting and arriving on the barrier, which
stays always over the barrier.

Now we are able to evaluate the price at the nodes on the barrier. Consider all the paths starting at
the node (2i, i) (with underlying asset B) and arriving at the node (2(i+s)+1, i+s) (with underlying
asset Bd), s = 0, ..., int( l−1

2 ), lying always over the barrier until the next to last node (2(i+ s), i+ s).
Such number of paths is cs. The price of the option at the node (2i, i) consists in the sum of the value
of the option at the node (2(i + s) + 1, i + s) (computed by the backward induction) multiplied by
the number of all the possible paths arriving to such node and staying always over the barrier until
the node (2i, i) (with underlying B), multiplied for the corresponding probabilities and discounted at
time 2i. Therefore the price of the known-and-out Parisian option at the node (2i, i) can be computed
by the formula

v2i(B) =

L∑
s=0

cs ρ2s+1πs(1− π)s+1v2(i+s)+1(Bd) where L = int(
l − 1

2
) (7)

We can now provide the pricing algorithm for the European Parisian options in the case s0 ≤ B:

1. at each node at maturity we set the option price as

vn(S) = max{S −K, 0} (8)
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2. for i = n−1, ..., n− l+1 (where the Parisian contract is surely active) we use standard backward
induction (3) at all the nodes.

3. for i = n− l, ..., |jS | − 4

• at all nodes lying strictly under the barrier (S < B) we use the backward induction (3),

• for all the nodes lying exactly on the barrier (S = B) we use the pricing formula (7).

4. for i = −jS−3, ..., 0 we use the backward induction (3) (here all the nodes are below the barrier).

5. we interpolate the four points (BujS+2j , v0(BujS+2j)), j = −1, 0, 1, 2 at s0, obtaining in such
way the price of the option.

In the case s0 > B the step 4 (consisting in the backward induction procedure) has to be replaced by
the direct computation of v0(Bu2j), j = jS

2 − 1, jS2 ,
jS
2 + 1, jS2 + 2. By virtue of (5) such prices can be

obtained by

v0(Bu2j) =

L∑
s=j

B2s,2j ρ2s+1πs−j(1− π)s+j+1v2s+1(Bd) (9)

Remark 1 In the cases jS = −2, jS = 0 we will use a three points interpolation in order to take into
account the near barrier problem (see Section 2).

The described algorithm has time complexity O(n2) and space complexity O(n). In fact the
backward induction procedure has these complexities. Moreover each computation formula (7) needs
a linear number of operations. In fact, one has

v2i(B) = ρ(1− π)
L∑

s=0

csαsv2(i+s)+1(Bd) (10)

where the coefficients cs, αs, s = 0, ..., L can be computed recursively by:

c0 = 1, cs+1 =
4s+ 2

s+ 2
cs; α0 = 1, αs+1 = ρ2π(1− π)αs.

The same holds true for the formula (9). In fact

v0(Bu2j) = ρ
(1− π)j+1

πj

L∑
s=j

c′sαsv2(i+s)+1(Bd) (11)

where the coefficients c′s = B2s,2j , s = j, ..., L can be computed recursively by:

c′j = 1, c′s+1 =
(2s+ 2)(2s+ 1)

(s+ j + 2)(s− j + 1)
c′s (12)

Note that the computation of cs, αs do not depend on time step i, hence they can be evaluated once
at the beginning of the whole procedure.
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2.2 European ParAsian options

The procedure use a scheme similar to the Parisian case with an important modification of the com-
putations of the prices on the barrier.

For the nodes strictly below the barrier, as before, we use the backward induction procedure (3).
In the case of the nodes lying exactly on the barrier the direct application of the previous procedure to
the ParAsian case, leads to a procedure of computational order O(n3), therefore a completely different
approach is needed here.

First we remark that in the case of Parisian option we have counted the number of time steps for
which the paths stay over the barrier while here we will count the number of nodes of the path lying
over the barrier. If a path stays for l consecutive steps over the barrier then it has l + 1 nodes over
the barrier, therefore in the ParAsian case it will be natural to use l + 1 as counting index instead of
l. For sake of simplicity of notation we still use l in all our formulas, but in the implementation of the
procedures l must be substituted by l + 1.

Let us we consider the the number Θ2m(l) which counts all the paths of 2m steps starting from
the node (2i, i) on the barrier, arriving at the node (2(i+m), i+m) and having not more than l nodes
which stay over the barrier (the first and the last node of the path are counted as well). By Corollary
2 of [7]) (see Case 1) such number is

Θ2m(l) =
∑

s=0,...,l−2
s even

(l − 1− s)B2m−2−s,0Bs,0 =

{∑L1
s=0(2L1 + 1− 2s)cm−s−1cs if l is even∑L1
s=0(2L1 + 2− 2s)cm−s−1cs if l is odd

(13)

where L1 = int( l2)− 1.
In [7]) the computation of Θ2m(l) has been deduced from the computation of the number T2m(l)

of all the paths of 2m steps starting, as before, from the node (2i, i) on the barrier, arriving at the
node (2(i+m), i+m) and having exactly l nodes which stay over the barrier. Such number (see Case
1 of Theorem 1 in [7]) is

T2m(l) =

L1∑
s=0

cm−s−1cs (14)

In fact, by the previous equation one has

T2m(0) = T2m(1) = 0, T2m(2j) = T2m(2j + 1) = T2m(2j − 2) + cm−jcj−1 j = 1, ...,m. (15)

Θ2m(0) = T2m(0) = 0, Θ2m(j) = Θ2m(j − 1) + T2m(j) j = 1, ..., 2m+ 1. (16)

Consider again the node (2i, i) lying on the barrier. Given a path γ starting from this node and
arriving at maturity, we consider the largest index m, i ≤ m ≤ n

2 , such that the node (2m,m) belongs
to the path γ. We call this node the ”exit node” of the path γ.

The set of all the paths starting from the node (2i, i) and arriving at maturity will be partitioned
in disjoint subsets Γs, s = i, ..., n2 , whose elements are the paths having (2s, s) as exit node.

We now consider, for s < n
2 the two subsets of Γs: Γdown

s which consist of all the paths of Γs

which stay always strictly under the barrier after their passage at the exit node, Γup
s which consist of

all the paths of Γs staying always strictly over the barrier after their passage at the exit node. Then
we denote by Γdown

s,l [Γup
s,l] the set of all the paths of Γdown

s [Γup
s ] whose trajectory between (2i, i) and

(2s, s) has not more than l nodes which stay over the barrier. The number of paths of Γdown
s,l is equal

to Θ2s−2i(l).
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Figure 2: Exit node of a path starting from the barrier

Every path of Γdown
s,l [resp. Γup

s,l] after the exit node (2s, s) remain always strictly under [over] the
barrier. Hence his contribution to the ParAsian option price at the node (2i, i) is related to the price
of an European knock-out up [down] standard barrier option which has (2s+ 1, s) [(2s+ 1, s+ 1)] as
initial node, n− 2s− 1 time steps and barrier B.

Therefore we consider a tree of n time steps (of the same form as before), the barrier B, and the
backward induction binomial procedure needed for pricing a standard European knock-out up [down]
barrier option. If we denote by vupi (S) [vdown

i (S)] the price value function of this barrier option at time
steps i and asset price S, the values vup2i+1(Bd) [vdown

2i+1 (Bu)] are the prices needed in the computation
of the ParAsian option.

With the previous notations, one has that the price at the node (2i, i) of our ParAsian option is
then given by v2i(B) = P2i(l), where

P2i(l) = ρ(1− π)

n/2−i−1∑
s=0

Θ2s(l)ρ
2s[π(1− π)]svup2(i+s)+1(Bd) +

ρπ

n/2−i−1∑
s=n/2−i+1−int(l/2)

Θ2s(l − n+ 2i+ 2s)ρ2s[π(1− π)]svdown
2(i+s)+1(Bu) + (17)

Θn−2i(l)ρ
n−2i[π(1− π)]n/2−imax(B −K, 0)

The first term of this formula is the sum of all the contributions of the paths of Γdown
s with s < n

2 . The
second term is the sum of all the contributions of the paths of Γup

s with s < n
2 (in this case the path

has n − 2i − 2s nodes lying over the barrier after the exit node). The third term is the contribution
of the paths of Γn/2.

When s0 ≤ B the pricing algorithm for the European ParAsian options is similar to the one
described in the Parisian case, the pricing formula (7) is replaced by the pricing formula (17).

When s0 > B the algorithm in the ParAsian case has to be changed with respect to the Parisian
case since it is not possible to use the value of the option below the barrier. In fact a path which
starts over the barrier when will arrive at a node under the barrier it has already spent a time over the
barrier, so the price at the node does not coincide with the price of the option starting from that node
which is the price evaluated by the backward procedure. So we apply a direct forward procedure in
order evaluate the four prices v0(Bu2j), j = jS

2 −1, jS2 ,
jS
2 +1, jS2 +2 needed for the interpolation. More

precisely we have to consider the contribution to the price v0(Bu2j), j > 0, of all the paths starting to
this node, arriving at the node (2s, s) of the barrier and lying always strictly over the barrier before
such node. For the price at this node we can consider the previous formula (17) where the discrete
time l has to be decreased by the time already spent over the barrier, so that, by virtue of (5) we
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obtain

v0(Bu2j) =

L∑
s=j

B2s−2,2j−1 ρ2sπs−j(1− π)s+jP2s(l − 2s) (18)

The time complexity of the procedure is O(n2). In fact the backward induction procedure has these
time complexity. Moreover each computation formula (17) needs a linear number of operations if a
preprocessing procedure consisting in the computation of the matrix Θ2s(j), s = 1, ..., n2 , j = 1, ..., 2s+1
is performed. By virtue of the recursive relation (15) and (16), this matrix can be computed with
a second order complexity algorithm before the pricing procedure. The computation of formula (18)
have complexity O(n2) using the computation formula (17) which is linear. In fact the formula (18)
can be written

v0(Bu2j) = (
1− π

π
)j

L∑
s=j

c′′sαsP2s(l − 2s) (19)

where the coefficients c′′s can be computed recursively in a similar way as in (12).
The space complexity of the procedure, as described previously, is O(n2). However it can be

reduced to O(n) with some suitable choices, like to store only Θs(j), j = 0, ..., s+ 1, and to evaluate
the sums until this term, then we evaluate Θs+1(j) and so on.

3 Binomial method of second order in the American knock-in case

In the discrete framework an American Parisian [ParAsian] knock-in option is an option which becomes
active when the underlying asset presents l consecutive [cumulative] nodes of the path over the barrier.
If the option becomes active at time step i ≤ n and has underlying asset S, the holder got a plain-
vanilla American option with n− i time steps to maturity and initial underlying asset S. We denote
by vamer

i (S) the price of this option. Let us remark that by a unique standard backward binomial
procedure, of order O(n2), we can obtain the values of vamer

i at every node of the tree.

3.1 American Parisian knock-in

In order to evaluate American Parisian knock-in options we will use a scheme similar to those described
in the case of European Parisian options (see Section 2.1).

For our pricing formulas we need to evaluate the number of paths of the tree starting from the
level B, arriving at the level Bus after l− 1 time steps (l+ s odd) and never lying under the level B.
Such number is equal to Bl−1,s and it has been already computed in (5).

The price of a knock-in Parisian option on the nodes of the barrier is computed by the formula

v2i(B) =
∑

s=0,...,l−1
s+l odd

Bl−1,s ρl−1π
l+s−1

2 (1− π)
l−s−1

2 vamer
2i+l−1(Bus) +

L1∑
s=0

cs ρ2s+1πs(1− π)s+1v2(i+s)+1(Bd), (20)

where L1 = int( l2)− 1. The first sum consider all the contributions given by the paths starting from
the node (2i, i) and having l consecutive nodes (i.e. l− 1 time steps) which lie over the barrier. These
contributions take into account the plain-vanilla American option price at the node of the paths where
the option becomes active. The second sum considers all the contributions given by the paths starting
from the node (2i, i) and arriving below the barrier with less than l − 1 time steps (see Figure 3).
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As in the case of European Parisian options, when s0 > B we need to compute v0(Bu2j),
j = jS

2 − 1, jS2 ,
jS
2 + 1, jS2 + 2. Now we have:

v0(Bu2j) =
∑

s=j0,...,2j+l−1
s+l odd

((
l − 1

l+2j−s−1
2

)
−

(
l − 1

l+2j+s+1
2

))
ρl−1π

l+s−2j−1
2 (1− π)

l−s+2j−1
2 vamer

l−1 (Bus)

+

L1∑
s=j

B2s,2j ρ2s+1πs−j(1− π)s+j+1v2s+1(Bd), (21)

where j0 = max(2j − l + 1, 0). The first sum consider all the contributions given by the paths lying
always over the barrier for the first l − 1 time steps and the number of such paths is evaluated by
virtue of (4). The second sum is the equivalent of (9).

The numerical algorithm proposed in the European Parisian case can be modified in the following
way. The steps 1 and 2 are replaced by the terminal condition vn−l+1(S) = 0 at all the nodes. In
the Step 3 pricing formula (7) is replaced by (20). In the case s0 > B, in Step 4 we use formula (21)
instead of (9).

Using similar arguments as in the European Parisian case we can state that the time complexity
is again O(n2) and the space complexity in O(n).

Figure 3: Price at the node of the barrier in the case of American Parisian up-and-in options

3.2 American ParAsian knock-in

In this case we use a different procedure: we evaluate by combinatorial formulas directly the price
without considering the backward induction.

We can obtain procedures of order 2 by using the binomial formulas introduced in [7] which allows
to count the number of paths having exactly l nodes, counted cumulatively, lying over the barrier. To
this end we consider the coefficients Bs,k defined in (5). Such coefficients can be evaluated, for all s, k,
s, k = 0, ..., n, by a procedure of order 2 in a easy way. In fact we have

B2s,0 = cs, Bs,s = 1,

Bs,k = 0, if s+ k is odd,

Bs,k = Bs−1,k−1 +Bs−1,k+1, ∀k ∈ {1, ..., s− 1, s+ k even}. (22)
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We need to evaluate the number Tn,j,m(l), i.e. the number of all paths of n steps starting from the
initial position, whose underlying is Buj , arriving at level Bum and having exactly l nodes over the
barrier. We remark that the number Tn(l), previously introduced (see (14), is equal to Tn,0,0(l). We
consider only paths whose position of arrival is over the barrier, hence m ≥ 0, while j can be both
negative and positive.

By Theorem 1 of [7] we get

Tn,j,m(l) =



∑
s=0,...,n−1−l

s−j even

Bn−2−s,mBs,−j−2 −
∑

s=0,...,n−1−l
s−j odd

Bn−2−s,m−1Bs,−j−1, if j < −1 and m > 0

∑
s=0,...,n−1−l
n+s even

Bn−2−s,0Bs,−j−2 if j < −1 and m = 0

∑
s=0,...,l−2
n+s even

Bn−2−s,0Bs,m+j if j ≥ 0 and m ≥ 0

(23)
We will need to evaluate the difference between Tn,j,m(l) and Tn,j,m(l− 1). By the previous equations
we get

Tn,j,m(l) = Tn,j,m(l − 1)+

{
−Bl−2,mBn−l,−j−2 if n+ l − j is even

Bl−2,m−1Bn−l,−j−1 if n+ l − j is odd
if j < −1 and m > 0

Tn,j,m(l) = Tn,j,m(l − 1)+

{
−Bl−2,0Bn−l,−j−2 if l is even

0 if l is odd
if j < −1 and m = 0 (24)

Tn,j,m(l) = Tn,j,m(l − 1)+

{
Bn−l,0Bl−2,m+j if n+ l is even

0 if n+ l is odd
if j ≥ 0 and m ≥ 0

In order to establish the price of an American ParAsian knock-in option we need to compute
the coefficients Tn,j,m(l) at all the nodes over the barrier. The formula (23) requires a number of
computations of order O(n), but the nodes involved are of order O(n2). Therefore, we have to modify
the procedure in order to reduce the computational complexity to second order.

Assume first that the underlying asset of the initial position lies strictly under the barrier, i.e.
j < −1. In order to develop the procedure we will use some properties of the numbers Tn,j,m(l):

1. Ts,j,m(l) = 0 if s− j +m is odd.

2. Ts,j,l−1(l) = Bs−l,−j−1 if s− j + l is odd.

3. Ts−1,j,l−2(l − 1) = Bs−l,−j−1 if s− j + l is odd.

4. Ts−1,j,m+1(l − 1) + Ts−1,j,m−1(l − 1) = Ts,j,m(l) if m > 0.

5. Ts−1,j,m−1(l − 1) = Ts,j,m(l)− Ts−1,j,m+1(l − 1) if m > 0.

The justifications of the properties are the following:
Property 1. If we start from the level Buj and we reach the level Bum in s time steps, then necessarily
j +m has the same parity of s.
Property 2. The highest level Bum reachable by a path which has exactly l nodes over the barrier is
Bul−1. Such a level can be reached only if the path stays always strictly under the barrier for the first
s− l time steps and arrives, in s− l time steps, at level Bu−1. The number of such paths is Bs−l,−j−1.

11



Property 3. It is achieved from Property 2 substituting s, l by s− 1 , l − 1 respectively.
Property 4. It is achieved from the definition of Tn,j,m(l).
Property 5. It is achieved from Property 4.

By virtue of the previous properties we can evaluate all the coefficients Ts,j,m(l) for 0 ≤ m ≤ l− 1,
0 ≤ s ≤ n, by a procedure of order O(n2) as follows:

Initialization:

• calculate first the coefficients Bs,k, s = 0, ..., n, k = 0, ..., s by the scheme (22);

• calculate the numbers Tn,j,m(l), m = 0, ..., l−1, with m−j even, by (23) (here we are considering
only the nodes at maturity);

• calculate the numbers Ts,j,l−1(l), for s = l − 1− j, ..., n with l − j + s odd, by Property 2 (here
we are considering the highest reachable nodes);

• calculate the numbers Ts,j,l−2(l−1), for s = l−1− j, ..., n−1 with l− j+ s even, by Property 3;

Backward calculation. For s = n− 1, n− 2, ..., l − 1− j do the following steps:

• calculate Ts−1,j,m−1(l − 1) from Ts−1,j,m+1(l − 1) and Ts,j,m(l) for m = l − 2, l − 3, ..., 1, with
s− j +m even, by Property 5,

• calculate Ts−1,j,m(l) from Ts−1,j,m(l − 1) for m = 0, 1, ..., l − 2, with s− j +m odd, by (24).

Finally we can obtain the price of the option with initial underlying Buj by

v0(Buj) =
∑

s=l−j−1,...,n

ρs
∑

m=0,...,l−1
s−j+m even

Ts,j,m(l)π
s+m−j

2 (1− π)
s−m+j

2 vamer
s (Bum) (25)

Consider now the case j ≥ 0.
If j < l− 1 the procedure is similar to the previous, it just changes Property 2 and, consequently,

Property 3. Now the option becomes active at the time step s = l − 1 when the path remains always
over the barrier (see formula (4)) or, eventually, at time steps s ≥ l when the path has at least one
node strictly under the barrier. In this second case the highest reachable level for the underlying asset
at time step s by a path having exactly l nodes over the barrier, is Bul−j−2. Such level is achievable
just by paths which stay over the barrier for the first j steps and the last l − j − 2 steps. Therefore,
Property 2 becomes

Ts,j,l−j−2(l) = Bs−l+2,0 = c(s−l+2)/2 if s− l is even, s > l.

We can conclude that (25) becomes

v0(Buj) =
∑

s=l,...,n

ρs
∑

m=0,...,l−j−2
s+j+m even

Ts,j,m(l)π
s+m−j

2 (1− π)
s−m+j

2 vamer
s (Bum)+

ρl−1
∑

m=0,...,j+l−1
s−j+m even

[(
l − 1

l−1+m−j
2

)
−

(
l − 1

l+m+j+1
2

)]
π

l−1+m−j
2 (1− π)

l−1−m+j
2 vamer

l−1 (Bum)

If j ≥ l − 1 the procedure is simpler, in fact the option is surely activated just at time step l − 1
and the calculus of the v0(Buj) depends only on the values of vamer

l−1 (Bum). By virtue of (4) one has

v0(Buj) = ρl−1
∑

m=j−l+1,...,j+l−1
s−j+m even

[(
l − 1

l−1+m−j
2

)
−

(
l − 1

l+m+j+1
2

)]
π

l−1+m−j
2 (1− π)

l−1−m+j
2 vamer

l−1 (Bum)
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4 Numerical results

In this section we provide some numerical comparisons of the algorithms presented in the previous
sections with the binomial method of Lyuu-Wu [11], the trinomial method of Avellaneda-Wu [1] and
the finite difference algorithms of Haber et al. [9]. In order to test the efficiency we will consider the
numerical experiments proposed in [1]. We will price Parisian style options with: volatility σ = 0.13,
interest rate r = 0.056, continuous dividend yield q = 0.007, current stock price s0 = 1/120.5, strike
price K = 1/125, time to maturity T = 0.5 and barrier 1/110. We illustrate the numerical results for
different windows periods.

In the ParAsian case we provide a numerical comparison also with the combinatorial method of
Li-Zhao [10] using the parameter and the data provided by the authors.

In order to obtain more precise approximations a time interpolation with respect to the windows
period is necessary. In fact, for small number of steps, the prices are very sensitive to the integer
approximation l = int(WT n). Hence we can use a linear interpolation of the prices corresponding to
the choice of the integers l and l+1. This adjustment will be used for our method only in the ParAsian
case (both in the European and American case).

All the computations presented in the tables have been performed in double precision on a PC
with a processor Centrino at 2.4 Ghz with 4 Mb of RAM.

4.1 European Parisian options

We compute the price of up-and-out Parisian call options with the following methods:

• the PDE finite difference method of Haber et al [9] of order 3 (HSW);

• the trinomial method of Avellaneda-Wu [1] of order 3 (AW);

• the forward binomial method of Lyuu-Wu [11] of order 2 (LW);

• the backward binomial method, introduced in Section 2.1, of order 2 (GZ).

We choose for the tree methods different time steps n = 100, 200, 400, 800, 1600. The Lyuu-Wu method
requires a different choice of such numbers related to Boyle-Lau technique. In the finite different case
we choose a mesh close to the corresponding time steps of the tree methods.

In Table 1 we report the price estimates for European Parisian options with time of computation
in parentheses.

We provide a second table, Table 2, with barrier near the initial spot value: B = 1/120. In this
case we choose also a longer windows period W = 10/360, 30/360.

n HSW AW LW GZ
5 days 15 days 5 days 15 days 5 days 15 days 5 days 15 days

100 199 [.00035] 266 [.00067] 206 [.00025] 277 [.00027] 181 [.00008] 251 [.00009] 211 [.00017] 281 [.00019]
200 200 [.00198] 271 [.00281] 208 [.00061] 278 [.00082] 224 [.00027] 286 [.00041] 218 [.00051] 279 [.00063]
400 200 [.0054] 262 [.0139] 215 [.0021] 279 [.0034] 210 [.0010] 274 [.0019] 218 [.0021] 280 [.0021]
800 208 [.0273] 271 [.0772] 215 [.0085] 279 [.0194] 221 [.0041] 287 [.0112] 216 [.0083] 279 [.0087]
1600 210 [.1460] 273 [.4317] 215 [.0392] 279 [.1140] 215 [.0200] 282 [.0839] 215 [.0305] 280 [.0340]

Table 1: European Parisian up-and-out call options with s0 = 1/120.5 and barrier B = 1/110 (all the
prices has been multiplied by 106, time in seconds)
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n HSW AW LW GZ
10 days 30 days 10 days 30 days 10 days 30 days 10 days 30 days

100 64 [.00055] 346 [.00123] 1067 [.00020] 1491 [.00020] 105 [.00008] 397 [.00013] 138 [.00015] 465 [.00016]
200 85 [.00233] 365 [.00609] 989 [.00053] 1407 [.00054] 109 [.00034] 409 [.00072] 139 [.00052] 474 [.00059]
400 114 [.0114] 424 [.0334] 921 [.0018] 1335 [.0019] 101 [.0013] 403 [.0051] 133 [.0020] 470 [.0022]
800 114 [.0622] 433 [.1852] 131 [.0122] 473 [.0479] 126 [.0071] 472 [.0369] 131 [.0082] 473 [.0085]
1600 124 [.3373] 455 [1.032] 131 [.0701] 473 [.3637] 118 [.0399] 448 [.2878] 131 [.0330] 473 [.0353]

Table 2: European Parisian up-and-out call options with s0 = 1/120.5 and barrier B = 1/120 (all the prices
has been multiplied by 107, time in seconds)

4.2 European ParAsian options

In this case both Avellaneda-Wu and Lyuu-Wu techniques are not available. Therefore we will com-
pare, in Table 3, our technique of order 2 with the the PDE finite difference method of Haber et al [9]
of order 3.

n HSW GZ
5 days 15 days 30 days 5 days 15 days 30 days

100 185 [.00040] 238 [.00094] 290 [.00160] 192 [.00136] 235 [.00136] 289 [.00137]
200 192 [.00162] 238 [.00437] 294 [.00876] 190 [.00594] 235 [.00598] 289 [.00596]
400 185 [.0084] 229 [.0241] 282 [.0482] 190 [.0180] 235 [.0182] 289 [.0182]
800 188 [.0467] 233 [.1356] 287 [.2691] 189 [.0724] 234 [.0736] 289 [.0740]
1600 188 [.2541] 234 [.7579] 287 [1.506] 189 [.2894] 234 [.2932] 289 [.3016]

Table 3: European ParAsian up-and-out call options with s0 = 1/120.5 and barrier B = 1/110 (all
the prices has been multiplied by 106, time in seconds)

Moreover we propose a table where we compare the generating functions method of Li-Zhao (LZ)
for ParAsian options using the ”counting steps” approach with our technique based on the ”counting
nodes” approach. Now the parameters are σ = 0.2, r = 0.08, q = 0, s0 = 100, K = 95, T = 1,
B = 110 and windows period 15 days. In this table we report as Benchmark the price, with the
corresponding confidence interval, obtained with Monte Carlo method using 107 simulations and 720
time discretisation steps.

n HSW LZ GZ Monte Carlo
100 1.0667 1.0157 0.9103
500 0.9365 0.9154 0.9113
1000 0.9213 0.9039 0.9076 0.9149 (0.9132-0.9167)
1500 0.9165 0.9112 0.9078
2000 0.9139 0.9065 0.9073

4.3 American Parisian/ParAsian knock-in

Also in this case both Avellaneda-Wu and Lyuu-Wu techniques are not available. Therefore we will
price our technique only with the the PDE finite difference method.

In Table 4 we report American Parisian knock-and-in options prices, whereas in Table 5 we will
consider the American ParAsian knock-and-in case.
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n HSW GZ
5 days 15 days 30 days 5 days 15 days 30 days

100 395 [.00182] 325 [.00248] 259 [.00331] 391 [.00050] 328 [.00050] 256 [.00054]
200 393 [.00597] 326 [.00918] 256 [.01440] 384 [.00180] 323 [.00182] 257 [.00193]
400 389 [.0221] 324 [.0398] 256 [.0675] 390 [.0068] 325 [.0068] 255 [.0071]
800 387 [.0877] 324 [.2002] 255 [.3565] 388 [.0257] 323 [.0276] 255 [.0289]
1600 387 [.3962] 323 [.9976] 255 [1.861] 387 [.1051] 324 [.1098] 255 [.1120]

Table 4: American Parisian up-and-in call options with s0 = 1/120.5 and barrier B = 1/110 (all the
prices has been multiplied by 106, time in seconds)

n HSW GZ
5 days 15 days 30 days 5 days 15 days 30 days

100 444 [.00191] 388 [.00279] 332 [.00395] 422 [.00072] 374 [.00078] 319 [.00090]
200 437 [.00635] 388 [.01076] 330 [.01821] 417 [.00276] 371 [.00300] 316 [.00348]
400 394 [.0247] 349 [.0499] 295 [.0870] 415 [.0096] 369 [.0108] 315 [.0130]
800 405 [.1059] 360 [.2575] 305 [.4748] 414 [.0286] 369 [.0444] 314 [.0508]
1600 402 [.4992] 356 [1.339] 302 [2.537] 414 [.1598] 368 [.1876] 314 [.2138]

Table 5: American ParAsian up-and-in call options with s0 = 1/120.5 and barrier B = 1/110 (all the prices
has been multiplied by 106, time in seconds)
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