
 

 

 
 
 
 
 

IRT Methods for Chain 

and Multiple Equating 

 

 
 
 
 
 

Michela Battauz 
 

November 2011 
 
 
 
 
 
 

n. 1/2011 



IRT Methods for Chain and Multiple Equating

Michela Battauz

November 17, 2011

Abstract

Linkage plans could be rather complex, including many forms, several
links and the connection of forms through different paths. This article stud-
ies item response theory equating methods for complex linkage plans when
the common-item nonequivalent group design is used. An efficient way to
average equating coefficients that link the same two forms through different
paths will be presented and the asymptotic standard error of indirect and
average equating coefficients are derived. The methodology is illustrated
using simulations studies and a real data example.

Keywords: asymptotic standard errors, double equating, equating coeffi-
cients, item response theory, multiple equating, weighted bisector.

1 Introduction

When several forms need to be equated, test equating can be performed by using
different linkage plans (Kolen & Brennan, 2004, §8.2.2) The linkage plan regards
the choice of the forms that present a direct link and it should be developed
considering various practical issues that affect the quality of the equating process
(Kolen & Brennan, 2004, p. 283). For example, long chains should be avoided as
they increase the amount of equating error. On the other hand, the number of
links to the same form should be contained in order to preserve test security by
limiting the exposure of the items. Furthermore, two old forms could be used to
equate new forms in order to achieve greater equating stability and to reduce the
equating error. This process is referred to as double linking. When the common-
item equating to a calibrated pool design (Kolen & Brennan, 2004, §6.9.1) is used,
a new form is equated to a pool of items that come from several old forms. This
process originates then the linkage of the new form to two or more old forms
(multiple linking). Finally, there are situations is which links are not carefully
planned before test administration and the equating is performed later. For all
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these reasons, the linkage plan could become quite complex, involving many links,
chains and alternative conversions through different forms.

The purpose of this article is to study item response theory (IRT) equating
methods for complex linkage plans when the common-item nonequivalent group
design is used. Both methods based on moments of item parameters, such as the
mean-sigma, the mean-mean and the mean-geometric mean methods, and response
function (also referred to as “characteristic curve”) methods will be considered.
IRT equating coefficients that link two forms through a chain of forms will be
presented. Furthermore, when two forms are connected through several paths the
equating coefficients related to these paths could be averaged to obtain synthetic
coefficients (Kolen & Brennan, 2004, p. 280). Holland & Strawderman (2011)
discussed the averaging of equating functions and showed that the angle bisector
method satisfies some desirable properties. Furthermore, they generalized this
method in order to include weights. A contribution of this paper is to provide an
efficient way to determine the weights for averaging the equating coefficients.

The accuracy of the equating process is typically assessed by using the asymp-
totic standard errors of the estimators of the linking coefficients (Ogasawara, 2011).
Ogasawara (2000) provided the asymptotic standard errors of IRT equating coef-
ficients using moments, Ogasawara (2001b) gave the asymptotic standard errors
of IRT equating coefficients using response function methods, while Ogasawara
(2001a) derived the asymptotic standard errors of IRT true score equating and
Ogasawara (2003) obtained the asymptotic standard errors of IRT observed score
equating. However, all these articles consider the case of two forms to be equated.
The present paper derives the asymptotic standard errors of IRT equating coef-
ficients when several forms are equated and the linkage plan involves chains and
double or multiple linking. More specifically, this paper derives asymptotic stan-
dard errors of IRT equating coefficients resulting from a chain of forms and from
averaging coefficients related to different paths.

The paper is structured as follows. Section 2 illustrates IRT test equating in
case of direct links and equating chains, Section 3 concerns averaging equating
coefficients that link two forms through different paths and propose an efficient
method to determine weights. The performance of the methodology is assessed
through a simulation study in Section 4 and a real data example in Section 5.
Finally, a discussion is given in Section 6.

2 IRT test equating

Consider a single test form that is denoted by g. In the three-parameter logistic
model (Linden & Hambleton, 1997), the probability of a positive response on item
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j in form g for a person with ability θ is given by

pgj(θ(g); agj , bgj, cgj) = cgj + (1− cgj)
exp

[

Dagj(θ(g) − bgj)
]

1 + exp
[

Dagj(θ(g) − bgj)
] , (1)

where agj is the item discrimination parameter, bgj is the item difficulty param-
eter, cgj is the item guessing parameter and D is a constant typically set to
1.7. We define the parameter vector of form g as αg = (α⊤

g1, . . . ,α
⊤
gng

)⊤, where

αgj = (agj, bgj , cgj)
⊤, j = 1, . . . , ng, and ng is the number of items of form g. Item

parameters are estimated separately for each form by using the marginal maximum
likelihood method (Bock & Aitkin, 1981), regarding the person parameter θ as a
random variable with standard normal distribution.

2.1 Direct equating

Let g− 1 be another form that presents ng−1 g items in common with form g. The
parameters estimated for form g − 1 can be transformed to the scale of form g by
using the following equations

θg = Ag−1 gθg−1 +Bg−1 g , (2)

ag =
ag−1

Ag−1 g
, (3)

and
bg = Ag−1 gbg−1 +Bg−1 g , (4)

where Ag−1 g and Bg−1 g are the equating coefficients. These coefficients can be
estimated by using moments of item parameters (Kolen & Brennan, 2004, §6.3.2;
Ogasawara, 2011), or response function methods (Kolen & Brennan, 2004, §6.3.3;
Ogasawara, 2001b).

Using the delta method, Ogasawara (2000) and Ogasawara (2001b) derived
the asymptotic variance-covariance matrix for the vector (Ag−1 g, Bg−1 g)

⊤, that is
given by

acov(Ag−1 g, Bg−1 g)
⊤ =

∂(Ag−1 g, Bg−1 g)
⊤

∂α⊤
g−1 g

acov(αg−1 g)
∂(Ag−1 g, Bg−1 g)

∂αg−1 g

where αg−1 g = (α⊤
g ,α

⊤
g−1)

⊤ is a vector containing all the item parameters related
to forms g−1 and g and acov(αg−1 g) is the asymptotic variance-covariance matrix
of αg−1 g. The derivatives depend on the method used to determine the equating
coefficients and are given Ogasawara (2000) and in Ogasawara (2011) for methods
based on moments, and in Ogasawara (2001b) for response function methods.
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2.2 Equating chains

Suppose that two forms are linked through a chain of tests that present common
items in pairs. Define the path from form 0 to form l as p = {0, 1, . . . , l}. Apply-
ing equation (2) recursively, it is possible to obtain the the equating coefficients
transforming the scale of θ0 to that of θl, that are

Ap = A0,1,...,l =
l
∏

g=1

Ag−1 g

and

Bp = B0,1,...,l =
l
∑

g=1

Bg−1 g Ag,...,l

where Ag,...,l =
∏l

h=g+1Ah−1h is the coefficient that links form g to form l. These
coefficients will be referred to as indirect equating coefficients.

Similarly to the case of a direct link, the delta method can be exploited to
obtain the asymptotic variance-covariance matrix of the vector (Ap, Bp)

⊤ that is

acov(Ap, Bp)
⊤ =

∂(Ap, Bp)
⊤

∂α⊤
p

acov(αp)
∂(Ap, Bp)

∂αp
, (5)

where αp = (α⊤
1 ,α

⊤
2 , . . . ,α

⊤
l )

⊤ is the vector containing all the item parameters
related to the forms that compose the path. The derivatives are given in Appendix
A.

3 Average equating coefficients

Suppose that two forms are linked throw different paths. In case of two paths that
link two forms the process is called double linking (Kolen & Brennan, 2004, p. 279).
Define the set of paths that link two forms 0 and l as P0l and the linking coefficients
related to path p as Ap and Bp, p ∈ P0l. As observed by Kolen & Brennan (2004,
p. 280) and Braun & Holland (1982, p. 44), the equating relationships provided
by each path could be averaged to produce a single conversion that is expected
to be more accurate. Holland & Strawderman (2011) discussed how to average
the equating functions obtained by using different equating methods and listed
seven desirable properties. They pointed out that the (weighted) mean of the
equating functions satisfies all properties except symmetry, that is satisfied only
in special circumstances. The symmetry property requires that the inverse function
of the average equating function equals the average of the inverse functions. This
property is instead satisfied by the angle bisector (Holland & Strawderman, 2011)
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that, in case of two linear equating functions that intersect at a point, is the linear
function that bisects the angle between them.

The proposal here is to use the theory developed by Holland & Strawderman
(2011) for averaging the equating functions that derive from different paths. Sup-
pose that there are two paths that link form 0 to form l and the equations that
transform the scale of θ0 to that of θl are

θ
p
l = Ap θ0 +Bp

and
θbl = Ab θ0 +Bb,

with p, b ∈ P0l. The angle bisector is the weighted average given by

θ∗l = wθ
p
l + (1− w)θbl ,

where

w =
(1 + A2

p)
−1/2

(1 + A2
p)

−1/2 + (1 + A2
b)

−1/2
.

According to Holland & Strawderman (2011), the angle bisector can be generalized
to include weights np, p ∈ P0l, and to consider more than two equations

θ∗l =
∑

p∈P0l

wp θ
p
l , (6)

where

wp =
np(1 + A2

p)
−1/2

∑

b∈P0l
nb(1 + A2

b)
−1/2

.

The average equating coefficients are then

A∗

0l =
∑

p∈P0l

Apwp

and
B∗

0l =
∑

p∈P0l

Bpwp.

A contribution of the present paper is to derive the asymptotic variance-
covariance matrix of the average equating coefficients and to develop a method
to determine the weights np.

Note that Ap and Ab, p, b ∈ P0l, may be correlated because parts of the two
paths may be common. The asymptotic variance-covariance matrix of the vector
(A∗

0l, B
∗
0l)

⊤ can then be again obtained by using the delta method, that is

acov(A∗

0l, B
∗

0l)
⊤ =

∂(A∗
0l, B

∗
0l)

⊤

∂α⊤
acov(α)

∂(A∗
0l, B

∗
0l)

∂α
,
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where α = (αp)p∈P0l
is the vector containing all the item parameters used in the

equating process in at least one of the paths in P0l. As the weights wp are function
of Ap, the derivatives can be obtained by using the chain rule

∂(A∗
0l, B

∗
0l)

⊤

∂α⊤
=

∂(A∗
0l, B

∗
0l)

⊤

∂(A⊤,B⊤)

∂(A⊤,B⊤)

∂α⊤
, (7)

where A = (Ap)p∈P0l
and B = (Bp)p∈P0l

are the vectors containing all the equating
coefficients of the paths that link forms 0 and l.

When the weighted average is used, wp = np in Equation (6), and the deriva-
tives are more simply given by

∂(A∗
0l, B

∗
0l)

⊤

∂α⊤
=
∑

p∈P0l

∂(Ap, Bp)
⊤

∂α⊤
np.

The derivatives are given in Appendix A.

A further issue concerns which weights np to use in averaging. Since equating
coefficients related to different paths generally have different variability, it is rea-
sonable to weight the coefficients in order to obtain an efficient average coefficient.
The proposal of this article is to determine weights by minimizing an objective
function that is the average variance of θ∗l , namely

E [Var(A∗

0lθ0 +B∗

0l)] = Var(A∗

0l) + Var(B∗

0l), (8)

assuming that θ0 has zero mean and variance equal to one. The minimization can
be performed numerically.

3.1 Common-Item Equating to a Calibrated Pool

A calibrated pool is a set of items coming from different forms whose parameters
are expressed on the same scale. When a new form is constructed, some items from
the calibrated item pool are included. The parameters that result from estimating
this new form are transformed to the scale that was established for the pool and
are then included in the pool. This process is known as common-item equating
to a calibrated pool design (Kolen & Brennan, 2004, §6.9.1). As a result of this
process, an intricate network of connections between each single form is produced
and the strength of these connections is not well understood. The methodology
proposed in this paper could help in analyzing the common-item equating to a
calibrated pool design.
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Suppose that a pool is formed by 3 forms (labeled 1, 2 and 3) and that they
enter the pool in order 1, 2 and 3. For simplicity, suppose that the discrimination
parameters are all set to 1 so that the equating coefficients A are all equal to 1.
Furthermore, suppose that the method used for equating is any method based on
moments of item parameters. Then, the conversion of the parameters of form 2 to
the scale of form 1 is b2 +B21. The conversion of the parameters of form 3 on the
scale of the pool (composed by form 1 and 2) is b3 +B∗

31, where

B∗

31 =
n13B31 + n23(B21 +B32)

n13 + n23
.

See Appendix B for the derivation. This shows that the process produces a
weighted average of the direct equating coefficients. However, if the forms en-
ter the pool in order 1, 3 and 2, the parameters of form 3 are converted on the
scale of form 1 using the equation b3 + B31 and the parameters of form 2 are
converted on that of the pool using the transformation b2 +B∗

21, where

B∗

21 =
n12B21 + n32(B31 +B23)

n12 + n32

.

This example shows that (i) the common-item equating to a calibrated pool
design produces a weighted average of the direct equating coefficients, (ii) the
weights depend on the order used to form the pool, (iii) the weights are not chosen
in order to obtain an efficient estimator, and (iv) the equating coefficients are not
updated using the informations that derive from the subsequent forms that enter
the pool. This shows that this design presents some limits and that it could be
used to choose the items that form the new forms but the determination of the
equating coefficients could be performed by using the methodology presented in
this paper.

4 Simulation study

The performance of the chain equating coefficients, the bisector coefficients and
their standard errors were assessed by means of a simulation study. In this study
there are 4 forms, labeled with the numbers from 1 to 4. Each form is composed
by 30 items and has 5 items in common with each of the other forms with the
exception of form 1 and 4 that do not share any item. Figure 1 represents the
links between the forms.

Person parameters are generated independently from a normal distribution
with means varying for each form and equal to -0.3,-0.1,0.1 and 0.3 and standard
deviations equal to 1.2, 1, 1 and 1.2. Item difficulty parameters were generated
from a normal distribution with standard deviation equal to one. In order to
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Figure 1: Linkage plan for the simulation study

obtain items with difficulties aligned with person abilities, the mean of the nor-
mal distribution was taken equal to the mean of the person parameters for the
unique items, while the common items are generated from a normal distribution
with mean equal to the average of the means of the person parameters. The dis-
crimination parameters were generated from the uniform distribution with range
[0.7, 1.3], while the guessing parameters were set to zero. The responses where
then simulated with probabilities given by equation (1) by using the R software
(R Development Core Team, 2011). The two-parameter logistic model was fit-
ted and the item parameters were estimated by the marginal maximum likelihood
method implemented in the ltm package (Rizopoulos, 2006). The functions for the
calculation of direct and indirect linking coefficients, weights, bisector coefficients
and standard errors were programmed in the R statistical environment. The min-
imization of (8) for determining weights was performed by using the Nelder-Mead
algorithm implemented in the function optim.

The method used for the estimation of the direct coefficients is the mean-mean
method. Results are based on 100 simulations. Table 1 presents the results for the
equating coefficients between form 1 and the other forms. For each pair of forms,
the table reports equating coefficients obtained using direct and indirect links and
the average of these coefficients obtained with the bisector and the weighted bi-
sector methods. Weights are determined using the procedure described in Section
3. Results show that the estimators of the equating coefficients based on direct
and indirect links are correct and that also averaging these coefficients by using
the bisector and the weighted bisector methods provide correct estimators. Fur-
thermore, the mean of the estimated standard errors of the coefficients are very
closed to the standard deviation of the estimated coefficients. It is possible to ob-
serve that coefficients obtained from direct links present smaller standard deviation
than coefficients based on indirect links and that the standard deviation increases
when the chain becomes longer. The weighted bisector always provides coefficients
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with smaller standard deviation than the unweighted bisector. Furthermore, the
standard deviation of the weighted bisector is always smaller than the standard
deviation of each single coefficient used for averaging, while the unweighted bisec-
tor does not. In fact, the estimated coefficients B based on the direct link between
form 1 and 2 present a standard deviation slightly smaller than the unweighted
bisector coefficient.

Table 1: Results of the simulation study

mean of mean of SD of SD of mean of mean of
link path At Bt A B A B se(A) se(B)

12 12 1.2 -0.2 1.205 -0.206 0.079 0.071 0.088 0.081
12 132 1.2 -0.2 1.198 -0.202 0.117 0.122 0.119 0.120
12 1342 1.2 -0.2 1.207 -0.211 0.138 0.142 0.132 0.115
12 bis 1.2 -0.2 1.201 -0.206 0.076 0.078 0.081 0.082
12 wbis 1.2 -0.2 1.195 -0.204 0.067 0.066 0.072 0.072

13 123 1.2 -0.4 1.215 -0.413 0.118 0.114 0.112 0.114
13 1243 1.2 -0.4 1.210 -0.405 0.137 0.134 0.139 0.107
13 13 1.2 -0.4 1.203 -0.408 0.079 0.085 0.084 0.092
13 bis 1.2 -0.4 1.206 -0.408 0.076 0.075 0.081 0.078
13 wbis 1.2 -0.4 1.197 -0.405 0.067 0.072 0.071 0.075

14 1234 1 -0.5 1.011 -0.505 0.118 0.115 0.102 0.105
14 124 1 -0.5 1.003 -0.497 0.094 0.091 0.089 0.079
14 1324 1 -0.5 0.998 -0.495 0.118 0.123 0.117 0.110
14 134 1 -0.5 1.002 -0.501 0.093 0.096 0.093 0.087
14 bis 1 -0.5 1.001 -0.499 0.066 0.068 0.064 0.066
14 wbis 1 -0.5 0.992 -0.496 0.065 0.068 0.063 0.066

Note: bis denotes bisector, wbis denotes weighted bisector, At and Bt are true coeffi-
cients, mean of A and mean of B are means of estimated equating coefficients, SD of
A and SD of B are standard deviations of the estimated equating coefficients, mean of
se(A) and mean of se(B) are means of estimated standard errors.

5 Example

The methodology proposed was applied to real new data collected from a sam-
ple of students attending the third year class of high school in Italy and concern
the mathematics final examination. Test developers prepared 5 forms each com-
posed by 11 items and presenting some item in common with the others. Figure
2 represents the linkage plan and the number of items in common between the
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forms. Each form was administered to a different group of students composed
by 418, 513, 375, 463 and 202 students. Data were analyzed using R software.
The two-parameter IRT model was fitted and the equating coefficients using the
mean-mean method and their standard error were calculated. Table 2 reports the
results regarding the link between form 1 and the others. In general it is possible
to observe that standard errors are quite large, indicating that the equating is not
accurate. The table provides a comparison between the bisector and the weighted
bisector methods for averaging with weights determined by minimizing the objec-
tive function given in Equation (8). The weighted bisector method yield smaller
standard errors of the equating coefficients than the bisector method with the only
exception of the standard error of the B coefficient of the link between form 1 and
2 (0.202 instead of 0.197). The weighted bisector gives always coefficients with
standard errors smaller than those of each direct or indirect coefficient. Instead,
the unweighted bisector in many cases provides a coefficient with standard error
larger than the standard error of one of the original coefficients. For example, in
the case of the link between form 1 and 4 the unweighted bisector yields coefficients
with larger standard error that the direct coefficients, while the weighted bisector
gives coefficient that present a gain in efficiency.

Figure 2: Linkage plan for the example.
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Table 2: Results of the example.
link path A B se(A) se(B) np

12 142 0.994 0.590 0.255 0.342 1.128
12 152 1.157 1.033 0.380 0.423 0.889
12 bis 1.072 0.802 0.226 0.197 -
12 wbis 1.062 0.776 0.219 0.202 -
13 14253 1.745 0.024 0.810 0.958 0.356
13 153 2.031 0.802 0.594 0.684 1.610
13 bis 1.880 0.390 0.605 0.645 -
13 wbis 1.974 0.647 0.579 0.565 -
14 14 0.649 0.117 0.100 0.128 1.600
14 1524 0.756 0.407 0.293 0.357 0.240
14 bis 0.701 0.259 0.150 0.156 -
14 wbis 0.663 0.154 0.095 0.120 -
15 1425 0.830 0.477 0.324 0.374 0.234
15 15 0.966 0.847 0.143 0.151 1.609
15 bis 0.896 0.656 0.183 0.177 -
15 wbis 0.948 0.797 0.130 0.121 -

6 Discussion

This article studies IRT equating methods for complex linkage plans and derives
standard errors for chained equating coefficients and average equating coefficients.
Furthermore, a method to determine weights for averaging is proposed. The sim-
ulation study and the example showed the importance of weighting in order to
obtain a gain in efficiency for the average coefficients with respect the single di-
rect and indirect coefficients, as unweighted average coefficients sometimes yield
greater standard errors than the single coefficients.

This article considers standard errors of equating coefficients, however, the
interest is often on standard error of adjusted scores. If a test is scored using
a linear conversion of estimated IRT abilities, the calculation of standard errors
of these scores is straightforward. When the true score equating method using
IRT equating coefficients is chosen, the process proposed by Ogasawara (2001a)
to determine asymptotic standard error of equated scores is still valid just using
an appropriate acov

{

(α⊤, A, B)⊤
}

in Equation (13) of Ogasawara (2001a). In
fact, when indirect equating coefficients or average equating coefficients are used
to equate two forms, the vector α contains all the item parameters involved in
the determination of A and B and the asymptotic variance-covariance function
of (A,B)⊤ is that given in this article. In the same way, when the observed
score equating method with equating coefficients is used, the asymptotic variance-
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covariance of the equated scores given in Equation (28) of Ogasawara (2003) is
valid by using the asymptotic variance-covariance matrix for (A,B)⊤ provided in
this article, where A and B can be indirect or average coefficients.

The simulation study and the example showed that sometimes the gain in
efficiency provided by the weighted bisector coefficient is small with respect to one
of the single coefficients used for averaging. However, averaging could be equally
convenient as it can yield greater equating stability.

Appendix A: Partial Derivatives of the Equating

Coefficients with respect to the Item Parameters

Indirect Coefficients

Irrespective of the method used to obtain direct equating coefficients, the partial
derivatives of indirect equating coefficients used in Equation (5) are as follows.

∂A0,...,l

∂agj
= A0,...,g−1

∂Ag−1 g

∂agj
Ag,...,l + A0,...,g

∂Ag g+1

∂agj
Ag+1,...,l.

Note that ∂Ag−1 g

∂agj
and ∂Ag g+1

∂agj
are both different from zero only if item j of form g

is present in both form g − 1 and in form g + 1. Similarly,

∂A0,...,l

∂bgj
= A0,...,g−1

∂Ag−1 g

∂bgj
Ag,...,l + A0,...,g

∂Ag g+1

∂bgj
Ag+1,...,l ,

while
∂B0,...,l

∂agj
=

l
∑

h=1

(

∂Bh−1 h

∂agj
Ah,...,l +Bh−1h

∂Ah,...,l

∂agj

)

,

where ∂Bh−1 h

∂agj
is equal to zero if g 6= h− 1 and g 6= h and

∂Ah,...,l

∂agj
is equal to zero if

g < h. Finally,

∂B0,...,l

∂bgj
=

l
∑

h=1

(

∂Bh−1 h

∂bgj
Ah,...,l + Bh−1h

∂Ah,...,l

∂bgj

)

.

Bisector Equating Coefficients

The partial derivatives of the bisector coefficients with respect to direct and indirect
equating coefficients relative to one of the paths that link to forms used in Equation
(7) are as follows:
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∂A∗
0l

∂Ap
= [1− A2

p(1 + A2
p)

−1]wp + A∗

0lwpAp(1 + A2
p)

−1,

∂A∗
0l

∂Bp
= 0,

∂B∗
0l

∂Ap

= −ApBp(1 + A2
p)

−1wp +B∗

0lwpAp(1 + A2
p)

−1,

∂B∗
0l

∂Bp

= wp.

Appendix B: Equating Coefficients for Common-

Item Equating to a Calibrated Pool

It is assumed that agj = 1 for all g and j. Then, the equating coefficient for
converting the parameters of form 2 on the scale of form 1 is given by

B12 =
1

n12

∑

j∈I12

b1j −
1

n12

∑

j∈I12

b2j .

We denote by Ip3 = I13 ∪ I23 the set of items in common between the pool and
form 3, and np3 = n13 + n23 (assuming that I13 ∩ I23 = ⊘) the cardinality of Ip3
and bpj the j-th difficulty item parameter of the pool.

The equating coefficient for converting the parameters of form 3 on the scale
of the pool is given by

B∗

13 =
1

np3

∑

j∈Ip3

bpj −
1

np3

∑

j∈Ip3

b3j

=
1

n13 + n23

(

∑

j∈I13

b1j +
∑

j∈I23

(b2j +B12)

)

−
1

n13 + n23

(

∑

j∈I13

b3j +
∑

j∈I23

b3j

)

=

∑

j∈I13
b1j −

∑

j∈I13
b3j +

∑

j∈I23
(b2j +B12)−

∑

j∈I23
b3j

n13 + n23

=
n13B13 + n23(B12 +B23)

n13 + n23
.
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